ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02202
  4. Cited By
Efficient Second Order Online Learning by Sketching

Efficient Second Order Online Learning by Sketching

6 February 2016
Haipeng Luo
Alekh Agarwal
Nicolò Cesa-Bianchi
John Langford
ArXivPDFHTML

Papers citing "Efficient Second Order Online Learning by Sketching"

16 / 16 papers shown
Title
Online Linear Regression in Dynamic Environments via Discounting
Online Linear Regression in Dynamic Environments via Discounting
Andrew Jacobsen
Ashok Cutkosky
51
5
0
29 May 2024
Nearly Optimal Algorithms with Sublinear Computational Complexity for
  Online Kernel Regression
Nearly Optimal Algorithms with Sublinear Computational Complexity for Online Kernel Regression
Junfan Li
Shizhong Liao
27
0
0
14 Jun 2023
Sketch-and-Project Meets Newton Method: Global $\mathcal O(k^{-2})$
  Convergence with Low-Rank Updates
Sketch-and-Project Meets Newton Method: Global O(k−2)\mathcal O(k^{-2})O(k−2) Convergence with Low-Rank Updates
Slavomír Hanzely
31
6
0
22 May 2023
Projection-free Online Exp-concave Optimization
Projection-free Online Exp-concave Optimization
Dan Garber
Ben Kretzu
24
8
0
09 Feb 2023
Sketchy: Memory-efficient Adaptive Regularization with Frequent
  Directions
Sketchy: Memory-efficient Adaptive Regularization with Frequent Directions
Vladimir Feinberg
Xinyi Chen
Y. Jennifer Sun
Rohan Anil
Elad Hazan
29
12
0
07 Feb 2023
A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares
A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares
C. Cartis
J. Fowkes
Zhen Shao
19
11
0
10 Nov 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
  Convergence
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
27
16
0
20 Apr 2022
Addressing modern and practical challenges in machine learning: A survey
  of online federated and transfer learning
Addressing modern and practical challenges in machine learning: A survey of online federated and transfer learning
Shuang Dai
Fanlin Meng
FedML
OnRL
40
21
0
07 Feb 2022
Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional
  Optimization: Sharp Analysis and Lower Bounds
Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional Optimization: Sharp Analysis and Lower Bounds
Jonathan Lacotte
Mert Pilanci
20
11
0
13 Dec 2020
Matrix-Free Preconditioning in Online Learning
Matrix-Free Preconditioning in Online Learning
Ashok Cutkosky
Tamás Sarlós
ODL
30
16
0
29 May 2019
Online learning using multiple times weight updating
Online learning using multiple times weight updating
Charanjeet Singh
A. Sharma
11
6
0
26 Oct 2018
Online Learning: A Comprehensive Survey
Online Learning: A Comprehensive Survey
Guosheng Lin
Doyen Sahoo
Jing Lu
P. Zhao
OffRL
31
634
0
08 Feb 2018
Stochastic Multi-armed Bandits in Constant Space
Stochastic Multi-armed Bandits in Constant Space
David Liau
Eric Price
Zhao Song
Ger Yang
25
35
0
25 Dec 2017
Online Learning with Gated Linear Networks
Online Learning with Gated Linear Networks
J. Veness
Tor Lattimore
Avishkar Bhoopchand
A. Grabska-Barwinska
Christopher Mattern
Peter Toth
30
25
0
05 Dec 2017
Second-Order Kernel Online Convex Optimization with Adaptive Sketching
Second-Order Kernel Online Convex Optimization with Adaptive Sketching
Daniele Calandriello
A. Lazaric
Michal Valko
11
38
0
15 Jun 2017
A Linearly Convergent Conditional Gradient Algorithm with Applications
  to Online and Stochastic Optimization
A Linearly Convergent Conditional Gradient Algorithm with Applications to Online and Stochastic Optimization
Dan Garber
Elad Hazan
63
96
0
20 Jan 2013
1