Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.00370
Cited By
Visualizing Large-scale and High-dimensional Data
1 February 2016
Jian Tang
J. Liu
Ming Zhang
Qiaozhu Mei
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Visualizing Large-scale and High-dimensional Data"
50 / 98 papers shown
Title
NOMAD Projection
Brandon Duderstadt
Zach Nussbaum
Laurens van der Maaten
AI4TS
12
0
0
21 May 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
247
0
0
12 Mar 2025
Dimension Reduction with Locally Adjusted Graphs
Yingfan Wang
Yiyang Sun
Haiyang Huang
Cynthia Rudin
88
1
0
19 Dec 2024
Navigating the Effect of Parametrization for Dimensionality Reduction
Haiyang Huang
Yingfan Wang
Cynthia Rudin
81
1
0
24 Nov 2024
Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective
Zhexuan Liu
Rong Ma
Yiqiao Zhong
62
0
0
22 Oct 2024
MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering
Sarwan Ali
Prakash Chourasia
Haris Mansoor
Bipin Koirala
Murray Patterson
213
0
0
21 Oct 2024
G-NeuroDAVIS: A Neural Network model for generalized embedding, data visualization and sample generation
Chayan Maitra
R. K. De
BDL
26
0
0
18 Oct 2024
Nearest Neighbor CCP-Based Molecular Sequence Analysis
Sarwan Ali
Prakash Chourasia
Bipin Koirala
Murray Patterson
42
1
0
07 Sep 2024
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions
Luca Reichmann
David Hägele
Daniel Weiskopf
207
0
0
07 Aug 2024
A Unified Framework for Combinatorial Optimization Based on Graph Neural Networks
Yaochu Jin
Xueming Yan
Shiqing Liu
Xiangyu Wang
51
3
0
19 Jun 2024
MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows
Xingjian Zhang
Yutong Xie
Jin Huang
Jinge Ma
Zhaoying Pan
...
Ziyang Xiong
Tolga Ergen
Dongsub Shim
Honglak Lee
Qiaozhu Mei
51
10
0
10 Jun 2024
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
Shay Deutsch
Lionel Yelibi
Alex Tong Lin
Arjun Ravi Kannan
56
1
0
04 Jun 2024
Curvature Augmented Manifold Embedding and Learning
Yongming Liu
MedIm
126
2
0
21 Mar 2024
Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold
Seonghyeon Jeong
Hau-tieng Wu
15
2
0
31 Jan 2024
Scalable manifold learning by uniform landmark sampling and constrained locally linear embedding
D. Peng
Zhipeng Gui
Wenzhang Wei
Huayi Wu
40
1
0
02 Jan 2024
k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Shashank Kotyan
Tatsuya Ueda
Danilo Vasconcellos Vargas
34
1
0
07 Dec 2023
Cluster Exploration using Informative Manifold Projections
Stavros Gerolymatos
Xenophon Evangelopoulos
V. Gusev
John Y. Goulermas
19
0
0
26 Sep 2023
Higher-order Motif-based Time Series Classification for Forced Oscillation Source Location in Power Grids
L. Huo
Xin Chen
AI4TS
13
2
0
23 Jun 2023
Relating tSNE and UMAP to Classical Dimensionality Reduction
Andrew Draganov
Simon Dohn
FAtt
32
4
0
20 Jun 2023
WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
Zijie J. Wang
Fred Hohman
Duen Horng Chau
42
21
0
15 Jun 2023
ActUp: Analyzing and Consolidating tSNE and UMAP
Andrew Draganov
Jakob Rødsgaard Jørgensen
Katrine Scheel Nellemann
Davide Mottin
Ira Assent
Tyrus Berry
Çigdem Aslay
19
5
0
12 May 2023
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional Datasets
Tillmann Ohm
M. Sola
Andres Karjus
Maximilian Schich
27
6
0
11 May 2023
Force-Directed Graph Layouts Revisited: A New Force Based on the T-Distribution
Fahai Zhong
Mingliang Xue
Jian Zhang
Fan Zhang
Rui Ban
Oliver Deussen
Yunhai Wang
23
8
0
05 Mar 2023
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
47
28
0
03 Jan 2023
EVNet: An Explainable Deep Network for Dimension Reduction
Z. Zang
Sheng-Hsien Cheng
Linyan Lu
Hanchen Xia
Liangyu Li
Yaoting Sun
Yongjie Xu
Lei Shang
Baigui Sun
Stan Z. Li
FAtt
32
15
0
21 Nov 2022
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
34
2
0
17 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
26
15
0
18 Oct 2022
ParaDime: A Framework for Parametric Dimensionality Reduction
A. Hinterreiter
Christina Humer
Bernhard Kainz
M. Streit
30
5
0
10 Oct 2022
A Complex Network based Graph Embedding Method for Link Prediction
Said Kerrache
Hafida Benhidour
13
1
0
11 Sep 2022
IAN: Iterated Adaptive Neighborhoods for manifold learning and dimensionality estimation
Luciano Dyballa
Steven W. Zucker
13
9
0
19 Aug 2022
FibeRed: Fiberwise Dimensionality Reduction of Topologically Complex Data with Vector Bundles
Luis Scoccola
Jose A. Perea
13
8
0
13 Jun 2022
From
t
t
t
-SNE to UMAP with contrastive learning
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
48
21
0
03 Jun 2022
ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
Jacob Miller
Vahan Huroyan
Raymundo Navarrete
Md. Iqbal Hossain
Stephen Kobourov
24
2
0
24 May 2022
Uniform Manifold Approximation with Two-phase Optimization
Hyeon Jeon
Hyung-Kwon Ko
S. Lee
Jaemin Jo
Jinwook Seo
35
13
0
01 May 2022
Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction
M. Sarfraz
Marios Koulakis
C. Seibold
Rainer Stiefelhagen
28
19
0
24 Mar 2022
Incorporating Texture Information into Dimensionality Reduction for High-Dimensional Images
Alexander Vieth
Anna Vilanova
B. Lelieveldt
E. Eisemann
T. Höllt
18
4
0
18 Feb 2022
On the Convergence of Clustered Federated Learning
Ma Jie
Guodong Long
Dinesh Manocha
Jing Jiang
Chengqi Zhang
FedML
39
46
0
13 Feb 2022
A Probabilistic Graph Coupling View of Dimension Reduction
Hugues van Assel
T. Espinasse
J. Chiquet
F. Picard
22
14
0
31 Jan 2022
DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal Causality of Deep Classification Training
Xiangli Yang
Yun Lin
Ruofan Liu
Zhenfeng He
Chao Wang
Jinlong Dong
Hong Mei
14
5
0
31 Dec 2021
Network representation learning: A macro and micro view
Xueyi Liu
Jie Tang
GNN
AI4TS
19
23
0
21 Nov 2021
Scalable Graph Embedding LearningOn A Single GPU
Azita Nouri
Philip E. Davis
P. Subedi
M. Parashar
GNN
36
1
0
13 Oct 2021
Cluster Analysis of a Symbolic Regression Search Space
G. Kronberger
Lukas Kammerer
Bogdan Burlacu
Stephan M. Winkler
M. Kommenda
M. Affenzeller
208
7
0
28 Sep 2021
Adaptive Neural Message Passing for Inductive Learning on Hypergraphs
Devanshu Arya
D. K. Gupta
S. Rudinac
M. Worring
52
12
0
22 Sep 2021
Uniform Manifold Approximation and Projection (UMAP) and its Variants: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
29
22
0
25 Aug 2021
Stochastic Cluster Embedding
Zhirong Yang
Yuwei Chen
D. Sedov
Samuel Kaski
J. Corander
11
5
0
18 Aug 2021
Measuring and Explaining the Inter-Cluster Reliability of Multidimensional Projections
Hyeon Jeon
Hyung-Kwon Ko
Jaemin Jo
Youngtaek Kim
Jinwook Seo
49
17
0
16 Jul 2021
An Analytical Survey on Recent Trends in High Dimensional Data Visualization
Alex B. Kiefer
Md. Khaledur Rahman
AI4TS
14
2
0
05 Jul 2021
Statistical embedding: Beyond principal components
D. Tjøstheim
Martin Jullum
Anders Løland
28
2
0
03 Jun 2021
On UMAP's true loss function
Sebastian Damrich
Fred Hamprecht
37
39
0
26 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
1
2
Next