ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.00370
  4. Cited By
Visualizing Large-scale and High-dimensional Data

Visualizing Large-scale and High-dimensional Data

1 February 2016
Jian Tang
J. Liu
Ming Zhang
Qiaozhu Mei
    AI4TS
ArXivPDFHTML

Papers citing "Visualizing Large-scale and High-dimensional Data"

50 / 98 papers shown
Title
NOMAD Projection
NOMAD Projection
Brandon Duderstadt
Zach Nussbaum
Laurens van der Maaten
AI4TS
12
0
0
21 May 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
244
0
0
12 Mar 2025
Dimension Reduction with Locally Adjusted Graphs
Dimension Reduction with Locally Adjusted Graphs
Yingfan Wang
Yiyang Sun
Haiyang Huang
Cynthia Rudin
88
1
0
19 Dec 2024
Navigating the Effect of Parametrization for Dimensionality Reduction
Navigating the Effect of Parametrization for Dimensionality Reduction
Haiyang Huang
Yingfan Wang
Cynthia Rudin
81
1
0
24 Nov 2024
Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective
Assessing and improving reliability of neighbor embedding methods: a map-continuity perspective
Zhexuan Liu
Rong Ma
Yiqiao Zhong
62
0
0
22 Oct 2024
MIK: Modified Isolation Kernel for Biological Sequence Visualization,
  Classification, and Clustering
MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering
Sarwan Ali
Prakash Chourasia
Haris Mansoor
Bipin Koirala
Murray Patterson
210
0
0
21 Oct 2024
G-NeuroDAVIS: A Neural Network model for generalized embedding, data
  visualization and sample generation
G-NeuroDAVIS: A Neural Network model for generalized embedding, data visualization and sample generation
Chayan Maitra
R. K. De
BDL
23
0
0
18 Oct 2024
Nearest Neighbor CCP-Based Molecular Sequence Analysis
Nearest Neighbor CCP-Based Molecular Sequence Analysis
Sarwan Ali
Prakash Chourasia
Bipin Koirala
Murray Patterson
42
1
0
07 Sep 2024
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample
  Extensions
Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions
Luca Reichmann
David Hägele
Daniel Weiskopf
204
0
0
07 Aug 2024
A Unified Framework for Combinatorial Optimization Based on Graph Neural
  Networks
A Unified Framework for Combinatorial Optimization Based on Graph Neural Networks
Yaochu Jin
Xueming Yan
Shiqing Liu
Xiangyu Wang
51
3
0
19 Jun 2024
MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific
  Workflows
MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows
Xingjian Zhang
Yutong Xie
Jin Huang
Jinge Ma
Zhaoying Pan
...
Ziyang Xiong
Tolga Ergen
Dongsub Shim
Honglak Lee
Qiaozhu Mei
51
10
0
10 Jun 2024
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
MS-IMAP -- A Multi-Scale Graph Embedding Approach for Interpretable Manifold Learning
Shay Deutsch
Lionel Yelibi
Alex Tong Lin
Arjun Ravi Kannan
56
1
0
04 Jun 2024
Curvature Augmented Manifold Embedding and Learning
Curvature Augmented Manifold Embedding and Learning
Yongming Liu
MedIm
123
2
0
21 Mar 2024
Convergence analysis of t-SNE as a gradient flow for point cloud on a
  manifold
Convergence analysis of t-SNE as a gradient flow for point cloud on a manifold
Seonghyeon Jeong
Hau-tieng Wu
15
2
0
31 Jan 2024
Scalable manifold learning by uniform landmark sampling and constrained
  locally linear embedding
Scalable manifold learning by uniform landmark sampling and constrained locally linear embedding
D. Peng
Zhipeng Gui
Wenzhang Wei
Huayi Wu
40
1
0
02 Jan 2024
k* Distribution: Evaluating the Latent Space of Deep Neural Networks
  using Local Neighborhood Analysis
k* Distribution: Evaluating the Latent Space of Deep Neural Networks using Local Neighborhood Analysis
Shashank Kotyan
Tatsuya Ueda
Danilo Vasconcellos Vargas
34
1
0
07 Dec 2023
Cluster Exploration using Informative Manifold Projections
Cluster Exploration using Informative Manifold Projections
Stavros Gerolymatos
Xenophon Evangelopoulos
V. Gusev
John Y. Goulermas
19
0
0
26 Sep 2023
Higher-order Motif-based Time Series Classification for Forced
  Oscillation Source Location in Power Grids
Higher-order Motif-based Time Series Classification for Forced Oscillation Source Location in Power Grids
L. Huo
Xin Chen
AI4TS
11
2
0
23 Jun 2023
Relating tSNE and UMAP to Classical Dimensionality Reduction
Relating tSNE and UMAP to Classical Dimensionality Reduction
Andrew Draganov
Simon Dohn
FAtt
32
4
0
20 Jun 2023
WizMap: Scalable Interactive Visualization for Exploring Large Machine
  Learning Embeddings
WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
Zijie J. Wang
Fred Hohman
Duen Horng Chau
42
21
0
15 Jun 2023
ActUp: Analyzing and Consolidating tSNE and UMAP
ActUp: Analyzing and Consolidating tSNE and UMAP
Andrew Draganov
Jakob Rødsgaard Jørgensen
Katrine Scheel Nellemann
Davide Mottin
Ira Assent
Tyrus Berry
Çigdem Aslay
17
5
0
12 May 2023
Collection Space Navigator: An Interactive Visualization Interface for
  Multidimensional Datasets
Collection Space Navigator: An Interactive Visualization Interface for Multidimensional Datasets
Tillmann Ohm
M. Sola
Andres Karjus
Maximilian Schich
27
6
0
11 May 2023
Force-Directed Graph Layouts Revisited: A New Force Based on the
  T-Distribution
Force-Directed Graph Layouts Revisited: A New Force Based on the T-Distribution
Fahai Zhong
Mingliang Xue
Jian Zhang
Fan Zhang
Rui Ban
Oliver Deussen
Yunhai Wang
20
8
0
05 Mar 2023
Backdoor Attacks Against Dataset Distillation
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
47
28
0
03 Jan 2023
EVNet: An Explainable Deep Network for Dimension Reduction
EVNet: An Explainable Deep Network for Dimension Reduction
Z. Zang
Sheng-Hsien Cheng
Linyan Lu
Hanchen Xia
Liangyu Li
Yaoting Sun
Yongjie Xu
Lei Shang
Baigui Sun
Stan Z. Li
FAtt
32
15
0
21 Nov 2022
Interpretable Dimensionality Reduction by Feature Preserving Manifold
  Approximation and Projection
Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
Yang Yang
Hongjian Sun
Jialei Gong
Di Yu
FAtt
34
2
0
17 Nov 2022
Unsupervised visualization of image datasets using contrastive learning
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
26
15
0
18 Oct 2022
ParaDime: A Framework for Parametric Dimensionality Reduction
ParaDime: A Framework for Parametric Dimensionality Reduction
A. Hinterreiter
Christina Humer
Bernhard Kainz
M. Streit
30
5
0
10 Oct 2022
A Complex Network based Graph Embedding Method for Link Prediction
A Complex Network based Graph Embedding Method for Link Prediction
Said Kerrache
Hafida Benhidour
11
1
0
11 Sep 2022
IAN: Iterated Adaptive Neighborhoods for manifold learning and
  dimensionality estimation
IAN: Iterated Adaptive Neighborhoods for manifold learning and dimensionality estimation
Luciano Dyballa
Steven W. Zucker
11
9
0
19 Aug 2022
FibeRed: Fiberwise Dimensionality Reduction of Topologically Complex
  Data with Vector Bundles
FibeRed: Fiberwise Dimensionality Reduction of Topologically Complex Data with Vector Bundles
Luis Scoccola
Jose A. Perea
13
8
0
13 Jun 2022
From $t$-SNE to UMAP with contrastive learning
From ttt-SNE to UMAP with contrastive learning
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
SSL
48
21
0
03 Jun 2022
ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
Jacob Miller
Vahan Huroyan
Raymundo Navarrete
Md. Iqbal Hossain
Stephen Kobourov
24
2
0
24 May 2022
Uniform Manifold Approximation with Two-phase Optimization
Uniform Manifold Approximation with Two-phase Optimization
Hyeon Jeon
Hyung-Kwon Ko
S. Lee
Jaemin Jo
Jinwook Seo
35
13
0
01 May 2022
Hierarchical Nearest Neighbor Graph Embedding for Efficient
  Dimensionality Reduction
Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction
M. Sarfraz
Marios Koulakis
C. Seibold
Rainer Stiefelhagen
25
19
0
24 Mar 2022
Incorporating Texture Information into Dimensionality Reduction for
  High-Dimensional Images
Incorporating Texture Information into Dimensionality Reduction for High-Dimensional Images
Alexander Vieth
Anna Vilanova
B. Lelieveldt
E. Eisemann
T. Höllt
18
4
0
18 Feb 2022
On the Convergence of Clustered Federated Learning
On the Convergence of Clustered Federated Learning
Ma Jie
Guodong Long
Dinesh Manocha
Jing Jiang
Chengqi Zhang
FedML
39
46
0
13 Feb 2022
A Probabilistic Graph Coupling View of Dimension Reduction
A Probabilistic Graph Coupling View of Dimension Reduction
Hugues van Assel
T. Espinasse
J. Chiquet
F. Picard
22
14
0
31 Jan 2022
DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal
  Causality of Deep Classification Training
DeepVisualInsight: Time-Travelling Visualization for Spatio-Temporal Causality of Deep Classification Training
Xiangli Yang
Yun Lin
Ruofan Liu
Zhenfeng He
Chao Wang
Jinlong Dong
Hong Mei
14
5
0
31 Dec 2021
Network representation learning: A macro and micro view
Network representation learning: A macro and micro view
Xueyi Liu
Jie Tang
GNN
AI4TS
19
23
0
21 Nov 2021
Scalable Graph Embedding LearningOn A Single GPU
Azita Nouri
Philip E. Davis
P. Subedi
M. Parashar
GNN
36
1
0
13 Oct 2021
Cluster Analysis of a Symbolic Regression Search Space
Cluster Analysis of a Symbolic Regression Search Space
G. Kronberger
Lukas Kammerer
Bogdan Burlacu
Stephan M. Winkler
M. Kommenda
M. Affenzeller
208
7
0
28 Sep 2021
Adaptive Neural Message Passing for Inductive Learning on Hypergraphs
Adaptive Neural Message Passing for Inductive Learning on Hypergraphs
Devanshu Arya
D. K. Gupta
S. Rudinac
M. Worring
52
12
0
22 Sep 2021
Uniform Manifold Approximation and Projection (UMAP) and its Variants:
  Tutorial and Survey
Uniform Manifold Approximation and Projection (UMAP) and its Variants: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
29
22
0
25 Aug 2021
Stochastic Cluster Embedding
Stochastic Cluster Embedding
Zhirong Yang
Yuwei Chen
D. Sedov
Samuel Kaski
J. Corander
9
5
0
18 Aug 2021
Measuring and Explaining the Inter-Cluster Reliability of
  Multidimensional Projections
Measuring and Explaining the Inter-Cluster Reliability of Multidimensional Projections
Hyeon Jeon
Hyung-Kwon Ko
Jaemin Jo
Youngtaek Kim
Jinwook Seo
49
17
0
16 Jul 2021
An Analytical Survey on Recent Trends in High Dimensional Data
  Visualization
An Analytical Survey on Recent Trends in High Dimensional Data Visualization
Alex B. Kiefer
Md. Khaledur Rahman
AI4TS
14
2
0
05 Jul 2021
Statistical embedding: Beyond principal components
Statistical embedding: Beyond principal components
D. Tjøstheim
Martin Jullum
Anders Løland
28
2
0
03 Jun 2021
On UMAP's true loss function
On UMAP's true loss function
Sebastian Damrich
Fred Hamprecht
34
39
0
26 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
12
Next