ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.08057
  4. Cited By
On the Geometric Ergodicity of Hamiltonian Monte Carlo

On the Geometric Ergodicity of Hamiltonian Monte Carlo

29 January 2016
Samuel Livingstone
M. Betancourt
Simon Byrne
Mark Girolami
ArXivPDFHTML

Papers citing "On the Geometric Ergodicity of Hamiltonian Monte Carlo"

50 / 65 papers shown
Title
Exponential speed up in Monte Carlo sampling through Radial Updates
Exponential speed up in Monte Carlo sampling through Radial Updates
Johann Ostmeyer
66
2
0
27 Nov 2024
Sacred and Profane: from the Involutive Theory of MCMC to Helpful
  Hamiltonian Hacks
Sacred and Profane: from the Involutive Theory of MCMC to Helpful Hamiltonian Hacks
N. Glatt-Holtz
Andrew J. Holbrook
J. Krometis
Cecilia F. Mondaini
Ami D. Sheth
28
0
0
22 Oct 2024
Repelling-Attracting Hamiltonian Monte Carlo
Repelling-Attracting Hamiltonian Monte Carlo
Siddharth Vishwanath
Hyungsuk Tak
16
0
0
07 Mar 2024
Listening to the Noise: Blind Denoising with Gibbs Diffusion
Listening to the Noise: Blind Denoising with Gibbs Diffusion
David Heurtel-Depeiges
C. Margossian
Ruben Ohana
Bruno Régaldo-Saint Blancard
DiffM
35
1
0
29 Feb 2024
Ensemble-Based Annealed Importance Sampling
Ensemble-Based Annealed Importance Sampling
Haoxuan Chen
Lexing Ying
33
2
0
28 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U
  Sampler and Stochastic Bridge Sampling
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
17
0
0
01 Jan 2024
Quantifying the effectiveness of linear preconditioning in Markov chain
  Monte Carlo
Quantifying the effectiveness of linear preconditioning in Markov chain Monte Carlo
Max Hird
Samuel Livingstone
22
5
0
08 Dec 2023
Learning variational autoencoders via MCMC speed measures
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
19
2
0
26 Aug 2023
Differentially Private Statistical Inference through $β$-Divergence
  One Posterior Sampling
Differentially Private Statistical Inference through βββ-Divergence One Posterior Sampling
Jack Jewson
Sahra Ghalebikesabi
Chris Holmes
25
2
0
11 Jul 2023
On the convergence of dynamic implementations of Hamiltonian Monte Carlo
  and No U-Turn Samplers
On the convergence of dynamic implementations of Hamiltonian Monte Carlo and No U-Turn Samplers
Alain Durmus
Samuel Gruffaz
Miika Kailas
E. Saksman
M. Vihola
19
5
0
07 Jul 2023
Geometric Ergodicity in Modified Variations of Riemannian Manifold and
  Lagrangian Monte Carlo
Geometric Ergodicity in Modified Variations of Riemannian Manifold and Lagrangian Monte Carlo
James A. Brofos
Vivekananda Roy
Roy R. Lederman
11
3
0
04 Jan 2023
Second Order Ensemble Langevin Method for Sampling and Inverse Problems
Second Order Ensemble Langevin Method for Sampling and Inverse Problems
Ziming Liu
Andrew M. Stuart
Yixuan Wang
24
6
0
09 Aug 2022
Expert Elicitation and Data Noise Learning for Material Flow Analysis
  using Bayesian Inference
Expert Elicitation and Data Noise Learning for Material Flow Analysis using Bayesian Inference
Jiayuan Dong
Jiankan Liao
Xun Huan
Daniel R. Cooper
9
6
0
13 Jul 2022
Unbiased Multilevel Monte Carlo methods for intractable distributions:
  MLMC meets MCMC
Unbiased Multilevel Monte Carlo methods for intractable distributions: MLMC meets MCMC
Guanyang Wang
T. Wang
29
14
0
11 Apr 2022
Exact Privacy Guarantees for Markov Chain Implementations of the
  Exponential Mechanism with Artificial Atoms
Exact Privacy Guarantees for Markov Chain Implementations of the Exponential Mechanism with Artificial Atoms
Jeremy Seeman
M. Reimherr
Aleksandra B. Slavkovic
16
11
0
03 Apr 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to
  Hamiltonian Monte Carlo
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
15
14
0
26 Feb 2022
Entropy-based adaptive Hamiltonian Monte Carlo
Entropy-based adaptive Hamiltonian Monte Carlo
Marcel Hirt
Michalis K. Titsias
P. Dellaportas
BDL
29
7
0
27 Oct 2021
Hamiltonian Monte Carlo with Asymmetrical Momentum Distributions
Hamiltonian Monte Carlo with Asymmetrical Momentum Distributions
Soumyadip Ghosh
Ying-Ling Lu
Aditya Gopalan
14
3
0
21 Oct 2021
Convergence of position-dependent MALA with application to conditional
  simulation in GLMMs
Convergence of position-dependent MALA with application to conditional simulation in GLMMs
Vivekananda Roy
Lijin Zhang
11
8
0
28 Aug 2021
An Introduction to Hamiltonian Monte Carlo Method for Sampling
An Introduction to Hamiltonian Monte Carlo Method for Sampling
Nisheeth K. Vishnoi
6
14
0
27 Aug 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
20
17
0
06 May 2021
Speed Up Zig-Zag
Speed Up Zig-Zag
G. Vasdekis
Gareth O. Roberts
11
11
0
30 Mar 2021
Hamiltonian Monte Carlo in Inverse Problems; Ill-Conditioning and
  Multi-Modality
Hamiltonian Monte Carlo in Inverse Problems; Ill-Conditioning and Multi-Modality
I. Langmore
M. Dikovsky
S. Geraedts
Peter C. Norgaard
R. V. Behren
14
7
0
12 Mar 2021
On $L^q$ Convergence of the Hamiltonian Monte Carlo
On LqL^qLq Convergence of the Hamiltonian Monte Carlo
Soumyadip Ghosh
Ying-Ling Lu
T. Nowicki
14
1
0
21 Jan 2021
An MCMC Method to Sample from Lattice Distributions
An MCMC Method to Sample from Lattice Distributions
Anand George
N. Kashyap
12
1
0
16 Jan 2021
Geometric ergodicity of Gibbs samplers for the Horseshoe and its
  regularized variants
Geometric ergodicity of Gibbs samplers for the Horseshoe and its regularized variants
S. K. Bhattacharya
Kshitij Khare
Subhadip Pal
13
7
0
02 Jan 2021
Coupling-based convergence assessment of some Gibbs samplers for
  high-dimensional Bayesian regression with shrinkage priors
Coupling-based convergence assessment of some Gibbs samplers for high-dimensional Bayesian regression with shrinkage priors
N. Biswas
A. Bhattacharya
Pierre E. Jacob
J. Johndrow
12
14
0
09 Dec 2020
Convergence of Preconditioned Hamiltonian Monte Carlo on Hilbert Spaces
Convergence of Preconditioned Hamiltonian Monte Carlo on Hilbert Spaces
Jakiw Pidstrigach
12
6
0
17 Nov 2020
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint
  Sampling Method
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint Sampling Method
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
11
33
0
06 Nov 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
4
15
0
22 Oct 2020
Magnetic Manifold Hamiltonian Monte Carlo
Magnetic Manifold Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
6
5
0
15 Oct 2020
Couplings for Andersen Dynamics
Couplings for Andersen Dynamics
Nawaf Bou-Rabee
A. Eberle
16
11
0
29 Sep 2020
Bayesian modelling of time-varying conditional heteroscedasticity
Bayesian modelling of time-varying conditional heteroscedasticity
Sayar Karmakar
Arkaprava Roy
6
12
0
13 Sep 2020
Non-Canonical Hamiltonian Monte Carlo
Non-Canonical Hamiltonian Monte Carlo
James A. Brofos
Roy R. Lederman
9
6
0
18 Aug 2020
Faster MCMC for Gaussian Latent Position Network Models
Faster MCMC for Gaussian Latent Position Network Models
Neil A. Spencer
B. Junker
T. Sweet
BDL
10
6
0
13 Jun 2020
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and
  Infinite Dimensions
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and Infinite Dimensions
N. Glatt-Holtz
Cecilia F. Mondaini
16
10
0
17 Mar 2020
HMC: avoiding rejections by not using leapfrog and some results on the
  acceptance rate
HMC: avoiding rejections by not using leapfrog and some results on the acceptance rate
M. Calvo
D. Sanz-Alonso
J. Sanz-Serna
11
7
0
06 Dec 2019
The Barker proposal: combining robustness and efficiency in
  gradient-based MCMC
The Barker proposal: combining robustness and efficiency in gradient-based MCMC
Samuel Livingstone
Giacomo Zanella
18
48
0
30 Aug 2019
Hug and Hop: a discrete-time, non-reversible Markov chain Monte-Carlo
  algorithm
Hug and Hop: a discrete-time, non-reversible Markov chain Monte-Carlo algorithm
Matthew Ludkin
Chris Sherlock
13
8
0
29 Jul 2019
Monte Carlo simulation on the Stiefel manifold via polar expansion
Monte Carlo simulation on the Stiefel manifold via polar expansion
Michael Jauch
P. Hoff
David B. Dunson
19
30
0
18 Jun 2019
Variational Langevin Hamiltonian Monte Carlo for Distant Multi-modal
  Sampling
Variational Langevin Hamiltonian Monte Carlo for Distant Multi-modal Sampling
Minghao Gu
Shiliang Sun
BDL
11
0
0
01 Jun 2019
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of
  multi-step gradients
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
11
100
0
29 May 2019
Fast Markov chain Monte Carlo for high dimensional Bayesian regression
  models with shrinkage priors
Fast Markov chain Monte Carlo for high dimensional Bayesian regression models with shrinkage priors
Rui Jin
Aixin Tan
19
8
0
16 Mar 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
21
103
0
09 Mar 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
11
22
0
01 Feb 2019
Stochastic Approximation Hamiltonian Monte Carlo
Stochastic Approximation Hamiltonian Monte Carlo
Jonghyun Yun
Minsuk Shin
Ick Hoon Jin
F. Liang
6
4
0
11 Oct 2018
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Alexander K. Buchholz
Nicolas Chopin
Pierre E. Jacob
24
32
0
23 Aug 2018
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal
  densities?
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal densities?
Oren Mangoubi
Natesh S. Pillai
Aaron Smith
16
31
0
09 Aug 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
77
136
0
01 May 2018
12
Next