ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00706
  4. Cited By
Weakly-supervised Disentangling with Recurrent Transformations for 3D
  View Synthesis

Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis

5 January 2016
Jimei Yang
Scott E. Reed
Ming-Hsuan Yang
Honglak Lee
    VOT
ArXiv (abs)PDFHTML

Papers citing "Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis"

17 / 17 papers shown
Title
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOSSSeg
760
37,927
0
20 May 2016
Disentangled Representations in Neural Models
Disentangled Representations in Neural Models
William F. Whitney
OODOCLDRL
120
18
0
07 Feb 2016
Action-Conditional Video Prediction using Deep Networks in Atari Games
Action-Conditional Video Prediction using Deep Networks in Atari Games
Junhyuk Oh
Xiaoxiao Guo
Honglak Lee
Richard L. Lewis
Satinder Singh
115
855
0
31 Jul 2015
DeepStereo: Learning to Predict New Views from the World's Imagery
DeepStereo: Learning to Predict New Views from the World's Imagery
John Flynn
Ivan Neulander
James Philbin
Noah Snavely
3DV
127
653
0
22 Jun 2015
Understanding deep features with computer-generated imagery
Understanding deep features with computer-generated imagery
Mathieu Aubry
Bryan C. Russell
93
149
0
03 Jun 2015
Fast R-CNN
Fast R-CNN
Ross B. Girshick
ObjD
322
25,114
0
30 Apr 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRLBDL
111
930
0
11 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
Discovering Hidden Factors of Variation in Deep Networks
Discovering Hidden Factors of Variation in Deep Networks
Brian Cheung
J. Livezey
Arjun K. Bansal
Bruno A. Olshausen
DRL
114
193
0
20 Dec 2014
Learning to Generate Chairs, Tables and Cars with Convolutional Networks
Learning to Generate Chairs, Tables and Cars with Convolutional Networks
Alexey Dosovitskiy
Jost Tobias Springenberg
Maxim Tatarchenko
Thomas Brox
GAN
193
676
0
21 Nov 2014
Show and Tell: A Neural Image Caption Generator
Show and Tell: A Neural Image Caption Generator
Oriol Vinyals
Alexander Toshev
Samy Bengio
D. Erhan
3DV
270
6,042
0
17 Nov 2014
Learning to Execute
Learning to Execute
Wojciech Zaremba
Ilya Sutskever
ODL
108
560
0
17 Oct 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,575
0
04 Sep 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLMBDL3DV
300
14,717
0
20 Jun 2014
"Mental Rotation" by Optimizing Transforming Distance
"Mental Rotation" by Optimizing Transforming Distance
Weiguang Ding
Graham W. Taylor
OOD
85
11
0
11 Jun 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
486
16,916
0
20 Dec 2013
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
137
12,272
0
19 Dec 2013
1