ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.07713
  4. Cited By
Multivariate Output Analysis for Markov chain Monte Carlo

Multivariate Output Analysis for Markov chain Monte Carlo

24 December 2015
Dootika Vats
James M. Flegal
Galin L. Jones
ArXivPDFHTML

Papers citing "Multivariate Output Analysis for Markov chain Monte Carlo"

50 / 85 papers shown
Title
Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in
  learning nonlocal operators
Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators
Yiming Fan
H. Najm
Yue Yu
Stewart Silling
M. DÉlia
UQCV
30
0
0
27 Oct 2024
Exact MCMC for Intractable Proposals
Exact MCMC for Intractable Proposals
Dwija Kakkad
Dootika Vats
39
0
0
14 Oct 2024
Implementing MCMC: Multivariate estimation with confidence
Implementing MCMC: Multivariate estimation with confidence
James M. Flegal
Rebecca P. Kurtz-Garcia
18
0
0
27 Aug 2024
Issues of parameterization and computation for posterior inference in
  partially identified models
Issues of parameterization and computation for posterior inference in partially identified models
Seren Lee
Paul Gustafson
20
0
0
19 Aug 2024
Efficient Multivariate Initial Sequence Estimators for MCMC
Efficient Multivariate Initial Sequence Estimators for MCMC
Arka Banerjee
Dootika Vats
30
0
0
22 Jun 2024
The data augmentation algorithm
The data augmentation algorithm
Vivekananda Roy
Kshitij Khare
J. Hobert
38
0
0
15 Jun 2024
Multivariate strong invariance principle and uncertainty assessment for
  time in-homogeneous cyclic MCMC samplers
Multivariate strong invariance principle and uncertainty assessment for time in-homogeneous cyclic MCMC samplers
Haoxiang Li
Qian Qin
26
1
0
16 May 2024
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
19
1
0
25 Apr 2024
ALAAMEE: Open-source software for fitting autologistic actor attribute
  models
ALAAMEE: Open-source software for fitting autologistic actor attribute models
A. Stivala
Peng Wang
Alessandro Lomi
21
0
0
03 Apr 2024
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling
Gradient-based Discrete Sampling with Automatic Cyclical Scheduling
Patrick Pynadath
Riddhiman Bhattacharya
Arun Hariharan
Ruqi Zhang
41
4
0
27 Feb 2024
Logistic-beta processes for dependent random probabilities with beta marginals
Logistic-beta processes for dependent random probabilities with beta marginals
Changwoo J. Lee
Alessandro Zito
Huiyan Sang
David B. Dunson
11
0
0
10 Feb 2024
For how many iterations should we run Markov chain Monte Carlo?
For how many iterations should we run Markov chain Monte Carlo?
C. Margossian
Andrew Gelman
19
6
0
05 Nov 2023
Multi-fidelity No-U-Turn Sampling
Multi-fidelity No-U-Turn Sampling
Kislaya Ravi
T. Neckel
H. Bungartz
20
1
0
04 Oct 2023
Geometric ergodicity of trans-dimensional Markov chain Monte Carlo
  algorithms
Geometric ergodicity of trans-dimensional Markov chain Monte Carlo algorithms
Qian Qin
9
3
0
31 Jul 2023
Explicit Constraints on the Geometric Rate of Convergence of Random Walk
  Metropolis-Hastings
Explicit Constraints on the Geometric Rate of Convergence of Random Walk Metropolis-Hastings
Riddhiman Bhattacharya
Galin L. Jones
17
2
0
21 Jul 2023
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space
  Models
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
Benjamin Cox
Victor Elvira
43
10
0
20 Jun 2023
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin
  Integrators
Contraction Rate Estimates of Stochastic Gradient Kinetic Langevin Integrators
B. Leimkuhler
Daniel Paulin
P. Whalley
33
5
0
14 Jun 2023
Bayesian model calibration for diblock copolymer thin film self-assembly
  using power spectrum of microscopy data and machine learning surrogate
Bayesian model calibration for diblock copolymer thin film self-assembly using power spectrum of microscopy data and machine learning surrogate
Lianghao Cao
Keyi Wu
J. Oden
P. Chen
Omar Ghattas
27
3
0
08 Jun 2023
On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient
  Descent
On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient Descent
Rahul Singh
A. Shukla
Dootika Vats
32
0
0
14 Mar 2023
Lower bounds on the rate of convergence for accept-reject-based Markov
  chains in Wasserstein and total variation distances
Lower bounds on the rate of convergence for accept-reject-based Markov chains in Wasserstein and total variation distances
Austin R. Brown
Galin L. Jones
26
3
0
12 Dec 2022
Convergence Analysis of Data Augmentation Algorithms for Bayesian Robust
  Multivariate Linear Regression with Incomplete Data
Convergence Analysis of Data Augmentation Algorithms for Bayesian Robust Multivariate Linear Regression with Incomplete Data
Haoxiang Li
Qian Qin
Galin L. Jones
16
1
0
04 Dec 2022
Multivariate strong invariance principles in Markov chain Monte Carlo
Multivariate strong invariance principles in Markov chain Monte Carlo
Arka Banerjee
Dootika Vats
18
3
0
13 Nov 2022
Understanding Linchpin Variables in Markov Chain Monte Carlo
Understanding Linchpin Variables in Markov Chain Monte Carlo
Dootika Vats
Felipe Acosta
M. Huber
Galin L. Jones
8
0
0
24 Oct 2022
Approximate Methods for Bayesian Computation
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
15
5
0
06 Oct 2022
Bayesian Nonlocal Operator Regression (BNOR): A Data-Driven Learning
  Framework of Nonlocal Models with Uncertainty Quantification
Bayesian Nonlocal Operator Regression (BNOR): A Data-Driven Learning Framework of Nonlocal Models with Uncertainty Quantification
Yiming Fan
M. DÉlia
Yue Yu
H. Najm
Stewart Silling
32
3
0
06 Oct 2022
Geometric ergodicity of Gibbs samplers for Bayesian error-in-variable
  regression
Geometric ergodicity of Gibbs samplers for Bayesian error-in-variable regression
Austin R. Brown
21
0
0
17 Sep 2022
Efficient shape-constrained inference for the autocovariance sequence
  from a reversible Markov chain
Efficient shape-constrained inference for the autocovariance sequence from a reversible Markov chain
Stephen Berg
Hyebin Song
27
6
0
26 Jul 2022
Solving the Poisson equation using coupled Markov chains
Solving the Poisson equation using coupled Markov chains
Randal Douc
Pierre E. Jacob
Anthony Lee
Dootika Vats
87
8
0
12 Jun 2022
On the use of a local $\hat{R}$ to improve MCMC convergence diagnostic
On the use of a local R^\hat{R}R^ to improve MCMC convergence diagnostic
Théo Moins
Julyan Arbel
A. Dutfoy
Stéphane Girard
27
12
0
13 May 2022
MCMC for GLMMs
MCMC for GLMMs
Vivekananda Roy
27
2
0
04 Apr 2022
Scalable Spike-and-Slab
Scalable Spike-and-Slab
N. Biswas
Lester W. Mackey
Xiao-Li Meng
GP
35
11
0
04 Apr 2022
Generating Independent Replicates Directly from the Posterior
  Distribution for a Class of Spatial Latent Gaussian Process Models
Generating Independent Replicates Directly from the Posterior Distribution for a Class of Spatial Latent Gaussian Process Models
J. Bradley
Madelyn Clinch
19
0
0
18 Mar 2022
ergm 4: Computational Improvements
ergm 4: Computational Improvements
P. Krivitsky
David R. Hunter
Martina Morris
Chad Klumb University of New South Wales
17
7
0
15 Mar 2022
Analysis of two-component Gibbs samplers using the theory of two
  projections
Analysis of two-component Gibbs samplers using the theory of two projections
Qian Qin
33
3
0
29 Jan 2022
Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo
Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo
Qiang Heng
Hua Zhou
Eric C. Chi
19
9
0
01 Jan 2022
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of
  Data with Complex Predictive Models under Uncertainty
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of Data with Complex Predictive Models under Uncertainty
Ki-tae Kim
Umberto Villa
M. Parno
Youssef Marzouk
Omar Ghattas
N. Petra
28
18
0
01 Dec 2021
Strong Invariance Principles for Ergodic Markov Processes
Strong Invariance Principles for Ergodic Markov Processes
A. Pengel
J. Bierkens
22
1
0
24 Nov 2021
Exact Convergence Analysis for Metropolis-Hastings Independence Samplers
  in Wasserstein Distances
Exact Convergence Analysis for Metropolis-Hastings Independence Samplers in Wasserstein Distances
Austin R. Brown
Galin L. Jones
21
7
0
19 Nov 2021
Asynchronous and Distributed Data Augmentation for Massive Data Settings
Asynchronous and Distributed Data Augmentation for Massive Data Settings
Jiayuan Zhou
Kshitij Khare
Sanvesh Srivastava
29
3
0
18 Sep 2021
Measuring Sample Quality in Algorithms for Intractable Normalizing
  Function Problems
Measuring Sample Quality in Algorithms for Intractable Normalizing Function Problems
Bokgyeong Kang
John Hughes
M. Haran
TPM
31
1
0
10 Sep 2021
Convergence rate of a collapsed Gibbs sampler for crossed random effects
  models
Convergence rate of a collapsed Gibbs sampler for crossed random effects models
Swarnadip Ghosh
Chenyang Zhong
16
4
0
07 Sep 2021
A principled stopping rule for importance sampling
A principled stopping rule for importance sampling
Medha Agarwal
Dootika Vats
Victor Elvira
33
2
0
30 Aug 2021
Convergence of position-dependent MALA with application to conditional
  simulation in GLMMs
Convergence of position-dependent MALA with application to conditional simulation in GLMMs
Vivekananda Roy
Lijin Zhang
27
8
0
28 Aug 2021
Joint Estimation of Robin Coefficient and Domain Boundary for the
  Poisson Problem
Joint Estimation of Robin Coefficient and Domain Boundary for the Poisson Problem
R. Nicholson
M. Niskanen
11
1
0
20 Aug 2021
Analyzing Relevance Vector Machines using a single penalty approach
Analyzing Relevance Vector Machines using a single penalty approach
A. Dixit
Vivekananda Roy
14
0
0
05 Jul 2021
Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte
  Carlo
Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte Carlo
W. Mongwe
R. Mbuvha
T. Marwala
13
6
0
05 Jul 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
31
1
0
03 Jun 2021
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Quan Zhou
Jun Yang
Dootika Vats
Gareth O. Roberts
Jeffrey S. Rosenthal
17
24
0
12 May 2021
Optimal Scaling of MCMC Beyond Metropolis
Optimal Scaling of MCMC Beyond Metropolis
Sanket Agrawal
Dootika Vats
K. Łatuszyński
Gareth O. Roberts
20
10
0
05 Apr 2021
Coupling-based convergence assessment of some Gibbs samplers for
  high-dimensional Bayesian regression with shrinkage priors
Coupling-based convergence assessment of some Gibbs samplers for high-dimensional Bayesian regression with shrinkage priors
N. Biswas
A. Bhattacharya
Pierre E. Jacob
J. Johndrow
22
14
0
09 Dec 2020
12
Next