ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.04295
  4. Cited By
Origami: A 803 GOp/s/W Convolutional Network Accelerator

Origami: A 803 GOp/s/W Convolutional Network Accelerator

14 December 2015
Lukas Cavigelli
Luca Benini
ArXivPDFHTML

Papers citing "Origami: A 803 GOp/s/W Convolutional Network Accelerator"

15 / 15 papers shown
Title
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
322
37,704
0
20 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Compression of Deep Neural Networks on the Fly
Compression of Deep Neural Networks on the Fly
G. Soulié
Vincent Gripon
M. Robert
21
25
0
29 Sep 2015
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
254
4,159
0
26 Apr 2015
Deep Learning with Limited Numerical Precision
Deep Learning with Limited Numerical Precision
Suyog Gupta
A. Agrawal
K. Gopalakrishnan
P. Narayanan
HAI
134
2,043
0
09 Feb 2015
maxDNN: An Efficient Convolution Kernel for Deep Learning with Maxwell
  GPUs
maxDNN: An Efficient Convolution Kernel for Deep Learning with Maxwell GPUs
Andrew Lavin
BDL
42
47
0
27 Jan 2015
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical
  Flow
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
Jérôme Revaud
Philippe Weinzaepfel
Zaïd Harchaoui
Cordelia Schmid
58
796
0
12 Jan 2015
cuDNN: Efficient Primitives for Deep Learning
cuDNN: Efficient Primitives for Deep Learning
Sharan Chetlur
Cliff Woolley
Philippe Vandermersch
Jonathan M. Cohen
J. Tran
Bryan Catanzaro
Evan Shelhamer
95
1,844
0
03 Oct 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
333
43,511
0
17 Sep 2014
Computing the Stereo Matching Cost with a Convolutional Neural Network
Computing the Stereo Matching Cost with a Convolutional Neural Network
Jure Zbontar
Yann LeCun
3DV
59
767
0
15 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
954
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.1K
39,383
0
01 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
275
43,290
0
01 May 2014
OverFeat: Integrated Recognition, Localization and Detection using
  Convolutional Networks
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
P. Sermanet
David Eigen
Xiang Zhang
Michaël Mathieu
Rob Fergus
Yann LeCun
ObjD
135
4,999
0
21 Dec 2013
Fast Training of Convolutional Networks through FFTs
Fast Training of Convolutional Networks through FFTs
Michaël Mathieu
Mikael Henaff
Yann LeCun
102
608
0
20 Dec 2013
1