ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.02311
  4. Cited By
Direct Intrinsics: Learning Albedo-Shading Decomposition by
  Convolutional Regression

Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression

8 December 2015
T. Narihira
Michael Maire
Stella X. Yu
ArXivPDFHTML

Papers citing "Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression"

14 / 14 papers shown
Title
Shape, Illumination, and Reflectance from Shading
Shape, Illumination, and Reflectance from Shading
Jonathan T. Barron
Jitendra Malik
3DV
33
728
0
07 Oct 2020
Learning Non-Lambertian Object Intrinsics across ShapeNet Categories
Learning Non-Lambertian Object Intrinsics across ShapeNet Categories
Jian Shi
Yue Dong
Hao Su
Stella X. Yu
78
183
0
27 Dec 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
320
37,704
0
20 May 2016
Learning Data-driven Reflectance Priors for Intrinsic Image
  Decomposition
Learning Data-driven Reflectance Priors for Intrinsic Image Decomposition
Tinghui Zhou
Philipp Krahenbuhl
Alexei A. Efros
100
163
0
08 Oct 2015
Learning Depth from Single Monocular Images Using Deep Convolutional
  Neural Fields
Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields
Fayao Liu
Chunhua Shen
Guosheng Lin
Ian Reid
MDE
99
1,196
0
26 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
200
18,534
0
06 Feb 2015
Hypercolumns for Object Segmentation and Fine-grained Localization
Hypercolumns for Object Segmentation and Fine-grained Localization
Bharath Hariharan
Pablo Arbeláez
Ross B. Girshick
Jitendra Malik
SSeg
108
1,594
0
21 Nov 2014
Designing Deep Networks for Surface Normal Estimation
Designing Deep Networks for Surface Normal Estimation
Xinyu Wang
David Fouhey
Abhinav Gupta
3DV
SSL
214
353
0
18 Nov 2014
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLM
MDE
135
2,674
0
18 Nov 2014
Reconstructive Sparse Code Transfer for Contour Detection and Semantic
  Labeling
Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling
Michael Maire
Stella X. Yu
Pietro Perona
28
33
0
16 Oct 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
192
14,703
0
20 Jun 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE
3DPC
3DV
157
4,041
0
09 Jun 2014
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
385
7,650
0
03 Jul 2012
Deep Lambertian Networks
Deep Lambertian Networks
Yichuan Tang
Ruslan Salakhutdinov
Geoffrey E. Hinton
GAN
CVBM
53
84
0
27 Jun 2012
1