ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.07367
  4. Cited By
Black box variational inference for state space models

Black box variational inference for state space models

23 November 2015
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
    BDL
ArXivPDFHTML

Papers citing "Black box variational inference for state space models"

31 / 31 papers shown
Title
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
36
3
0
19 Jul 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
33
2
0
19 Jan 2024
Efficient variational approximations for state space models
Efficient variational approximations for state space models
Rubén Loaiza-Maya
D. Nibbering
6
1
0
20 Oct 2022
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
37
29
0
06 Jul 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
26
8
0
10 Jun 2022
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Daniel Kramer
P. Bommer
Carlo Tombolini
G. Koppe
Daniel Durstewitz
BDL
AI4TS
AI4CE
25
19
0
04 Nov 2021
Online Variational Filtering and Parameter Learning
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
30
21
0
26 Oct 2021
Unsupervised Learned Kalman Filtering
Unsupervised Learned Kalman Filtering
Guy Revach
Nir Shlezinger
Timur Locher
Xiaoyong Ni
Ruud J. G. van Sloun
Yonina C. Eldar
SSL
31
31
0
18 Oct 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
  Dynamics
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
31
264
0
21 Jul 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
43
66
0
15 Feb 2021
Physics-aware, probabilistic model order reduction with guaranteed
  stability
Physics-aware, probabilistic model order reduction with guaranteed stability
Sebastian Kaltenbach
P. Koutsourelakis
DiffM
AI4CE
16
15
0
14 Jan 2021
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
33
82
0
15 Jun 2020
The Neural Moving Average Model for Scalable Variational Inference of
  State Space Models
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDL
AI4TS
16
6
0
02 Oct 2019
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
24
10
0
20 Sep 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
25
372
0
01 Jul 2019
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
20
34
0
01 Jul 2019
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep
  Feature Spaces
Recurrent Kalman Networks: Factorized Inference in High-Dimensional Deep Feature Spaces
P. Becker
Harit Pandya
Gregor H. W. Gebhardt
Cheng Zhao
James Taylor
Gerhard Neumann
BDL
13
94
0
17 May 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for
  Health Profiling
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
24
22
0
06 Feb 2019
Temporal Difference Variational Auto-Encoder
Temporal Difference Variational Auto-Encoder
Karol Gregor
George Papamakarios
F. Besse
Lars Buesing
Theophane Weber
DRL
24
126
0
08 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Learning Awareness Models
Learning Awareness Models
Brandon Amos
Laurent Dinh
Serkan Cabi
Thomas Rothörl
Sergio Gomez Colmenarejo
Alistair Muldal
Tom Erez
Yuval Tassa
Nando de Freitas
Misha Denil
23
44
0
17 Apr 2018
Variational Message Passing with Structured Inference Networks
Variational Message Passing with Structured Inference Networks
Wu Lin
Nicolas Hubacher
Mohammad Emtiyaz Khan
BDL
23
54
0
15 Mar 2018
Black-box Variational Inference for Stochastic Differential Equations
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
16
57
0
09 Feb 2018
Gaussian variational approximation for high-dimensional state space
  models
Gaussian variational approximation for high-dimensional state space models
M. Quiroz
David J. Nott
Robert Kohn
24
40
0
24 Jan 2018
Stochastic Sequential Neural Networks with Structured Inference
Stochastic Sequential Neural Networks with Structured Inference
Hao Liu
Haoli Bai
Lirong He
Zenglin Xu
BDL
23
3
0
24 May 2017
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
16
452
0
30 Sep 2016
Linear dynamical neural population models through nonlinear embeddings
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
16
155
0
26 May 2016
Sequential Neural Models with Stochastic Layers
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
65
393
0
24 May 2016
Gaussian variational approximation with sparse precision matrices
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
30
76
0
18 May 2016
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDL
OCL
22
482
0
20 Mar 2016
1