Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.05897
Cited By
v1
v2
v3 (latest)
Censoring Representations with an Adversary
18 November 2015
Harrison Edwards
Amos Storkey
AAML
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Censoring Representations with an Adversary"
50 / 205 papers shown
Title
Are Commercial Face Detection Models as Biased as Academic Models?
Samuel Dooley
George Z. Wei
Tom Goldstein
John P. Dickerson
CVBM
80
4
0
25 Jan 2022
Modeling Techniques for Machine Learning Fairness: A Survey
Mingyang Wan
Daochen Zha
Ninghao Liu
Na Zou
SyDa
FaML
79
36
0
04 Nov 2021
Algorithmic encoding of protected characteristics in image-based models for disease detection
Ben Glocker
Charles Jones
Mélanie Bernhardt
S. Winzeck
94
9
0
27 Oct 2021
Comparing Human and Machine Bias in Face Recognition
Samuel Dooley
Ryan Downing
George Z. Wei
N. Shankar
Bradon Thymes
...
Olufemi Obiwumi
Valeriia Cherepanova
Micah Goldblum
John P. Dickerson
Tom Goldstein
CVBM
191
12
0
15 Oct 2021
Residual2Vec: Debiasing graph embedding with random graphs
Sadamori Kojaku
Jisung Yoon
I. Constantino
Yong-Yeol Ahn
CML
78
23
0
14 Oct 2021
Convex-Concave Min-Max Stackelberg Games
Denizalp Goktas
Amy Greenwald
101
30
0
05 Oct 2021
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Boddeti
64
5
0
12 Sep 2021
On Characterizing the Trade-off in Invariant Representation Learning
Bashir Sadeghi
Sepehr Dehdashtian
Vishnu Boddeti
105
7
0
08 Sep 2021
TabFairGAN: Fair Tabular Data Generation with Generative Adversarial Networks
Amirarsalan Rajabi
O. Garibay
GAN
82
58
0
02 Sep 2021
Fair Representation: Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks
Xudong Shen
Yongkang Wong
Mohan S. Kankanhalli
FaML
83
20
0
01 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
168
536
0
31 Aug 2021
Adversarial Stacked Auto-Encoders for Fair Representation Learning
Patrik Kenfack
Adil Khan
Rasheed Hussain
S. M. Ahsan Kazmi
FaML
29
4
0
27 Jul 2021
Impossibility results for fair representations
Tosca Lechner
Shai Ben-David
Sushant Agarwal
Nivasini Ananthakrishnan
FaML
35
15
0
07 Jul 2021
Fair Visual Recognition in Limited Data Regime using Self-Supervision and Self-Distillation
Pratik Mazumder
Pravendra Singh
Vinay P. Namboodiri
SSL
43
2
0
30 Jun 2021
Projection-wise Disentangling for Fair and Interpretable Representation Learning: Application to 3D Facial Shape Analysis
Xianjing Liu
Yue Liu
Esther E. Bron
W. Niessen
E. Wolvius
Gennady Roshchupkin
CVBM
87
10
0
25 Jun 2021
Fairness via Representation Neutralization
Mengnan Du
Subhabrata Mukherjee
Guanchu Wang
Ruixiang Tang
Ahmed Hassan Awadallah
Helen Zhou
90
81
0
23 Jun 2021
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
57
38
0
10 Jun 2021
Fair Representations by Compression
Xavier Gitiaux
Huzefa Rangwala
FaML
114
14
0
28 May 2021
Obstructing Classification via Projection
P. Haghighatkhah
Wouter Meulemans
Bettina Speckmann
Jérôme Urhausen
Kevin Verbeek
49
6
0
19 May 2021
Improving Fairness of AI Systems with Lossless De-biasing
Yan Zhou
Murat Kantarcioglu
Chris Clifton
66
12
0
10 May 2021
Towards Fair Classifiers Without Sensitive Attributes: Exploring Biases in Related Features
Tianxiang Zhao
Enyan Dai
Kai Shu
Suhang Wang
FaML
74
58
0
29 Apr 2021
Unsupervised Information Obfuscation for Split Inference of Neural Networks
Mohammad Samragh
H. Hosseini
Aleksei Triastcyn
K. Azarian
Joseph B. Soriaga
F. Koushanfar
59
11
0
23 Apr 2021
Understanding and Mitigating Accuracy Disparity in Regression
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
Han Zhao
90
25
0
24 Feb 2021
Technical Challenges for Training Fair Neural Networks
Valeriia Cherepanova
V. Nanda
Micah Goldblum
John P. Dickerson
Tom Goldstein
FaML
71
22
0
12 Feb 2021
Quantifying and Mitigating Privacy Risks of Contrastive Learning
Xinlei He
Yang Zhang
81
52
0
08 Feb 2021
Removing biased data to improve fairness and accuracy
Sahil Verma
Michael Ernst
René Just
FaML
123
25
0
05 Feb 2021
Adversarial Stylometry in the Wild: Transferable Lexical Substitution Attacks on Author Profiling
Chris Emmery
Ákos Kádár
Grzegorz Chrupała
AAML
92
20
0
27 Jan 2021
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation
Umang Gupta
Aaron Ferber
B. Dilkina
Greg Ver Steeg
101
58
0
11 Jan 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
312
500
0
31 Dec 2020
Fundamental Limits and Tradeoffs in Invariant Representation Learning
Han Zhao
Chen Dan
Bryon Aragam
Tommi Jaakkola
Geoffrey J. Gordon
Pradeep Ravikumar
FaML
96
45
0
19 Dec 2020
TARA: Training and Representation Alteration for AI Fairness and Domain Generalization
William Paul
Armin Hadzic
Neil J. Joshi
F. Alajaji
Philippe Burlina
89
19
0
11 Dec 2020
FairOD: Fairness-aware Outlier Detection
Shubhranshu Shekhar
Neil Shah
Leman Akoglu
70
37
0
05 Dec 2020
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
134
24
0
19 Nov 2020
Metric-Free Individual Fairness with Cooperative Contextual Bandits
Qian Hu
Huzefa Rangwala
FaML
52
10
0
13 Nov 2020
All of the Fairness for Edge Prediction with Optimal Transport
Charlotte Laclau
I. Redko
Manvi Choudhary
C. Largeron
FaML
61
43
0
30 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
121
48
0
19 Oct 2020
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
70
385
0
14 Oct 2020
Measuring and Reducing Gendered Correlations in Pre-trained Models
Kellie Webster
Xuezhi Wang
Ian Tenney
Alex Beutel
Emily Pitler
Ellie Pavlick
Jilin Chen
Ed Chi
Slav Petrov
FaML
90
260
0
12 Oct 2020
FairMixRep : Self-supervised Robust Representation Learning for Heterogeneous Data with Fairness constraints
Souradip Chakraborty
Ekansh Verma
Saswata Sahoo
J. Datta
47
2
0
07 Oct 2020
Fairness Perception from a Network-Centric Perspective
Farzan Masrour
P. Tan
A. Esfahanian
FaML
37
2
0
07 Oct 2020
Can we Generalize and Distribute Private Representation Learning?
Sheikh Shams Azam
Taejin Kim
Seyyedali Hosseinalipour
Carlee Joe-Wong
S. Bagchi
Christopher G. Brinton
112
11
0
05 Oct 2020
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
106
653
0
04 Oct 2020
Universal Physiological Representation Learning with Soft-Disentangled Rateless Autoencoders
Mo Han
Ozan Özdenizci
T. Koike-Akino
Ye Wang
Deniz Erdogmus
OOD
AAML
DRL
68
10
0
28 Sep 2020
Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach
Cuong Tran
Ferdinando Fioretto
Pascal Van Hentenryck
FedML
79
80
0
26 Sep 2020
Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information
Enyan Dai
Suhang Wang
FaML
117
248
0
03 Sep 2020
NoPeek: Information leakage reduction to share activations in distributed deep learning
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
106
86
0
20 Aug 2020
Null-sampling for Interpretable and Fair Representations
T. Kehrenberg
Myles Bartlett
Oliver Thomas
Novi Quadrianto
OOD
41
29
0
12 Aug 2020
Beyond
H
\mathcal{H}
H
-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
97
23
0
30 Jul 2020
Privacy-preserving Voice Analysis via Disentangled Representations
Ranya Aloufi
Hamed Haddadi
David E. Boyle
DRL
126
58
0
29 Jul 2020
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
70
62
0
18 Jul 2020
Previous
1
2
3
4
5
Next