ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.05622
  4. Cited By
Predicting distributions with Linearizing Belief Networks

Predicting distributions with Linearizing Belief Networks

17 November 2015
Yann N. Dauphin
David Grangier
ArXivPDFHTML

Papers citing "Predicting distributions with Linearizing Belief Networks"

9 / 9 papers shown
Title
SemSegDepth: A Combined Model for Semantic Segmentation and Depth
  Completion
SemSegDepth: A Combined Model for Semantic Segmentation and Depth Completion
J. Lagos
Esa Rahtu
VLM
3DV
19
5
0
01 Sep 2022
A Deeper Look at Salient Object Detection: Bi-stream Network with a
  Small Training Dataset
A Deeper Look at Salient Object Detection: Bi-stream Network with a Small Training Dataset
Zhenyu Wu
Shuai Li
Chenglizhao Chen
Aimin Hao
Hong Qin
ObjD
18
8
0
07 Aug 2020
Left ventricle segmentation By modelling uncertainty in prediction of
  deep convolutional neural networks and adaptive thresholding inference
Left ventricle segmentation By modelling uncertainty in prediction of deep convolutional neural networks and adaptive thresholding inference
Alireza Norouzi
Ali Emami
S. M. Reza Soroushmehr
N. Karimi
S. Samavi
Kayvan Najarian
UQCV
22
1
0
23 Feb 2018
Layer-wise Learning of Stochastic Neural Networks with Information
  Bottleneck
Layer-wise Learning of Stochastic Neural Networks with Information Bottleneck
Thanh T. Nguyen
Jaesik Choi
20
13
0
04 Dec 2017
Improving Variational Auto-Encoders using convex combination linear
  Inverse Autoregressive Flow
Improving Variational Auto-Encoders using convex combination linear Inverse Autoregressive Flow
Jakub M. Tomczak
Max Welling
DRL
16
24
0
07 Jun 2017
Multimodal Prediction and Personalization of Photo Edits with Deep
  Generative Models
Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models
A. Saeedi
Matthew D. Hoffman
S. DiVerdi
Asma Ghandeharioun
Matthew J. Johnson
Ryan P. Adams
DiffM
21
9
0
17 Apr 2017
Language Modeling with Gated Convolutional Networks
Language Modeling with Gated Convolutional Networks
Yann N. Dauphin
Angela Fan
Michael Auli
David Grangier
27
2,357
0
23 Dec 2016
Improving Variational Auto-Encoders using Householder Flow
Improving Variational Auto-Encoders using Householder Flow
Jakub M. Tomczak
Max Welling
BDL
DRL
23
173
0
29 Nov 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
52
288
0
22 Feb 2016
1