ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.04992
  4. Cited By
The Correlated Pseudo-Marginal Method

The Correlated Pseudo-Marginal Method

16 November 2015
George Deligiannidis
Arnaud Doucet
M. Pitt
ArXivPDFHTML

Papers citing "The Correlated Pseudo-Marginal Method"

20 / 20 papers shown
Title
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Adrien Corenflos
Simo Särkkä
58
0
0
01 Mar 2023
Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension
  Reduction, Application to Partly Observed Diffusion Processes
Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes
Nicolas Chopin
Mathieu Gerber
34
3
0
16 Jun 2017
Auxiliary gradient-based sampling algorithms
Auxiliary gradient-based sampling algorithms
Michalis K. Titsias
O. Papaspiliopoulos
47
41
0
30 Oct 2016
Coupling of Particle Filters
Coupling of Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
69
24
0
03 Jun 2016
On Coupling Particle Filter Trajectories
On Coupling Particle Filter Trajectories
Deborshee Sen
Alexandre Hoang Thiery
Ajay Jasra
65
21
0
03 Jun 2016
MCMC for Imbalanced Categorical Data
MCMC for Imbalanced Categorical Data
J. Johndrow
Aaron Smith
Natesh Pillai
David B. Dunson
24
11
0
19 May 2016
The iterated auxiliary particle filter
The iterated auxiliary particle filter
Pieralberto Guarniero
A. M. Johansen
Anthony Lee
OffRL
58
105
0
19 Nov 2015
Accelerating pseudo-marginal Metropolis-Hastings by correlating
  auxiliary variables
Accelerating pseudo-marginal Metropolis-Hastings by correlating auxiliary variables
J. Dahlin
Fredrik Lindsten
J. Kronander
Thomas B. Schon
50
37
0
17 Nov 2015
Pseudo-Marginal Slice Sampling
Pseudo-Marginal Slice Sampling
Iain Murray
Matthew M. Graham
57
37
0
10 Oct 2015
Sequential Quasi-Monte Carlo
Sequential Quasi-Monte Carlo
Mathieu Gerber
Nicolas Chopin
68
56
0
17 Feb 2014
Particle Gibbs with Ancestor Sampling
Particle Gibbs with Ancestor Sampling
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
106
252
0
03 Jan 2014
On the efficiency of pseudo-marginal random walk Metropolis algorithms
On the efficiency of pseudo-marginal random walk Metropolis algorithms
Chris Sherlock
Alexandre Hoang Thiery
Gareth O. Roberts
Jeffrey S. Rosenthal
72
191
0
27 Sep 2013
Derivative-Free Estimation of the Score Vector and Observed Information
  Matrix with Application to State-Space Models
Derivative-Free Estimation of the Score Vector and Observed Information Matrix with Application to State-Space Models
Arnaud Doucet
Pierre E. Jacob
Sylvain Rubenthaler
53
25
0
21 Apr 2013
Convergence properties of pseudo-marginal Markov chain Monte Carlo
  algorithms
Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms
Christophe Andrieu
M. Vihola
88
127
0
04 Oct 2012
Coupled MCMC with a randomized acceptance probability
Coupled MCMC with a randomized acceptance probability
Geoff K. Nicholls
C. Fox
Alexis Muir Watt
77
41
0
30 May 2012
On Disturbance State-Space Models and the Particle Marginal
  Metropolis-Hastings Sampler
On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler
Lawrence M. Murray
E. Jones
J. Parslow
76
31
0
28 Feb 2012
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
97
480
0
03 Feb 2012
SMC^2: an efficient algorithm for sequential analysis of state-space
  models
SMC^2: an efficient algorithm for sequential analysis of state-space models
Nicolas Chopin
Pierre E. Jacob
O. Papaspiliopoulos
89
357
0
07 Jan 2011
Efficient Bayesian Inference for Switching State-Space Models using
  Discrete Particle Markov Chain Monte Carlo Methods
Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods
N. Whiteley
Christophe Andrieu
Arnaud Doucet
101
77
0
10 Nov 2010
The pseudo-marginal approach for efficient Monte Carlo computations
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
179
895
0
31 Mar 2009
1