ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06286
28
104

The iterated auxiliary particle filter

19 November 2015
Pieralberto Guarniero
A. M. Johansen
Anthony Lee
    OffRL
ArXivPDFHTML
Abstract

We present an offline, iterated particle filter to facilitate statistical inference in general state space hidden Markov models. Given a model and a sequence of observations, the associated marginal likelihood L is central to likelihood-based inference for unknown statistical parameters. We define a class of "twisted" models: each member is specified by a sequence of positive functions psi and has an associated psi-auxiliary particle filter that provides unbiased estimates of L. We identify a sequence psi* that is optimal in the sense that the psi*-auxiliary particle filter's estimate of L has zero variance. In practical applications, psi* is unknown so the psi*-auxiliary particle filter cannot straightforwardly be implemented. We use an iterative scheme to approximate psi*, and demonstrate empirically that the resulting iterated auxiliary particle filter significantly outperforms the bootstrap particle filter in challenging settings. Applications include parameter estimation using a particle Markov chain Monte Carlo algorithm.

View on arXiv
Comments on this paper