Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.01644
Cited By
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
5 November 2015
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model"
50 / 244 papers shown
Title
"How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations
Himabindu Lakkaraju
Osbert Bastani
90
258
0
15 Nov 2019
Coverage-based Outlier Explanation
Yue Wu
Leman Akoglu
Ian Davidson
16
1
0
06 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
182
6,380
0
22 Oct 2019
A Decision-Theoretic Approach for Model Interpretability in Bayesian Framework
Homayun Afrabandpey
Tomi Peltola
Juho Piironen
Aki Vehtari
Samuel Kaski
77
3
0
21 Oct 2019
Finding Interpretable Concept Spaces in Node Embeddings using Knowledge Bases
Maximilian Idahl
Megha Khosla
Avishek Anand
33
10
0
11 Oct 2019
Modeling Conceptual Understanding in Image Reference Games
Rodolfo Corona
Stephan Alaniz
Zeynep Akata
97
27
0
10 Oct 2019
MonoNet: Towards Interpretable Models by Learning Monotonic Features
An-phi Nguyen
María Rodríguez Martínez
FAtt
60
13
0
30 Sep 2019
Model-Agnostic Linear Competitors -- When Interpretable Models Compete and Collaborate with Black-Box Models
Hassan Rafique
Tong Wang
Qihang Lin
49
4
0
23 Sep 2019
SIRUS: Stable and Interpretable RUle Set for Classification
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
56
9
0
19 Aug 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
164
1,464
0
17 Jul 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Helen Zhou
XAI
ELM
67
67
0
16 Jul 2019
A study on the Interpretability of Neural Retrieval Models using DeepSHAP
Zeon Trevor Fernando
Jaspreet Singh
Avishek Anand
FAtt
AAML
65
68
0
15 Jul 2019
Optimal Explanations of Linear Models
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
FAtt
38
2
0
08 Jul 2019
The Price of Interpretability
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
63
34
0
08 Jul 2019
Interpretable and Personalized Apprenticeship Scheduling: Learning Interpretable Scheduling Policies from Heterogeneous User Demonstrations
Rohan R. Paleja
Andrew Silva
Letian Chen
Matthew C. Gombolay
98
33
0
14 Jun 2019
A hybrid machine learning framework for analyzing human decision making through learning preferences
Mengzhuo Guo
Qingpeng Zhang
Xiuwu Liao
Youhua Chen
Daniel Dajun Zeng
93
8
0
04 Jun 2019
Ex-Twit: Explainable Twitter Mining on Health Data
Tunazzina Islam
FAtt
21
5
0
24 May 2019
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
110
1
0
04 May 2019
Interpretable multiclass classification by MDL-based rule lists
Hugo Manuel Proença
M. Leeuwen
59
48
0
01 May 2019
Optimal Sparse Decision Trees
Xiyang Hu
Cynthia Rudin
Margo Seltzer
143
175
0
29 Apr 2019
Explainability in Human-Agent Systems
A. Rosenfeld
A. Richardson
XAI
83
207
0
17 Apr 2019
A Categorisation of Post-hoc Explanations for Predictive Models
John Mitros
Brian Mac Namee
XAI
CML
28
1
0
04 Apr 2019
VINE: Visualizing Statistical Interactions in Black Box Models
M. Britton
FAtt
63
22
0
01 Apr 2019
Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making
S. Aghaei
Javad Azizi
P. Vayanos
FaML
87
180
0
25 Mar 2019
Optimization Methods for Interpretable Differentiable Decision Trees in Reinforcement Learning
I. D. Rodriguez
Taylor W. Killian
Ivan Dario Jimenez Rodriguez
Sung-Hyun Son
Matthew C. Gombolay
OffRL
85
12
0
22 Mar 2019
Neural Network Attributions: A Causal Perspective
Aditya Chattopadhyay
Piyushi Manupriya
Anirban Sarkar
V. Balasubramanian
CML
96
146
0
06 Feb 2019
Explanation in Human-AI Systems: A Literature Meta-Review, Synopsis of Key Ideas and Publications, and Bibliography for Explainable AI
Shane T. Mueller
R. Hoffman
W. Clancey
Abigail Emrey
Gary Klein
XAI
76
285
0
05 Feb 2019
An Evaluation of the Human-Interpretability of Explanation
Isaac Lage
Emily Chen
Jeffrey He
Menaka Narayanan
Been Kim
Sam Gershman
Finale Doshi-Velez
FAtt
XAI
135
159
0
31 Jan 2019
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
70
147
0
28 Jan 2019
Quantifying Interpretability and Trust in Machine Learning Systems
Philipp Schmidt
F. Biessmann
56
115
0
20 Jan 2019
Explaining Explanations to Society
Leilani H. Gilpin
Cecilia Testart
Nathaniel Fruchter
Julius Adebayo
XAI
118
35
0
19 Jan 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin Yu
XAI
HAI
211
1,459
0
14 Jan 2019
Improving the Interpretability of Deep Neural Networks with Knowledge Distillation
Xuan Liu
Xiaoguang Wang
Stan Matwin
HAI
73
101
0
28 Dec 2018
Interpretable Optimal Stopping
D. Ciocan
V. Mišić
68
44
0
18 Dec 2018
MLIC: A MaxSAT-Based framework for learning interpretable classification rules
Dmitry Malioutov
Kuldeep S. Meel
80
44
0
05 Dec 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
122
102
0
28 Nov 2018
A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration
M. Cavallo
Çağatay Demiralp
57
55
0
28 Nov 2018
How to improve the interpretability of kernel learning
Jinwei Zhao
Qizhou Wang
Yufei Wang
Yu Liu
Zhenghao Shi
Xinhong Hei
FAtt
42
0
0
21 Nov 2018
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
49
2
0
09 Nov 2018
MCA-based Rule Mining Enables Interpretable Inference in Clinical Psychiatry
Qingzhu Gao
H. González
P. Ahammad
21
3
0
26 Oct 2018
What can AI do for me: Evaluating Machine Learning Interpretations in Cooperative Play
Shi Feng
Jordan L. Boyd-Graber
HAI
82
130
0
23 Oct 2018
Axiomatic Interpretability for Multiclass Additive Models
Xuezhou Zhang
S. Tan
Paul Koch
Yin Lou
Urszula Chajewska
R. Caruana
FAtt
AI4CE
55
3
0
22 Oct 2018
Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals
Andrew Cotter
Heinrich Jiang
S. Wang
Taman Narayan
Maya R. Gupta
Seungil You
Karthik Sridharan
90
158
0
11 Sep 2018
Grounding Visual Explanations
Lisa Anne Hendricks
Ronghang Hu
Trevor Darrell
Zeynep Akata
FAtt
59
230
0
25 Jul 2018
Knowledge-based Transfer Learning Explanation
Jiaoyan Chen
Freddy Lecue
Jeff Z. Pan
Ian Horrocks
Huajun Chen
58
42
0
22 Jul 2018
RuleMatrix: Visualizing and Understanding Classifiers with Rules
Yao Ming
Huamin Qu
E. Bertini
FAtt
77
215
0
17 Jul 2018
Rule Induction Partitioning Estimator
Vincent Margot
Jean-Patrick Baudry
Frédéric Guilloux
Olivier Wintenberger
52
4
0
12 Jul 2018
A Review of Challenges and Opportunities in Machine Learning for Health
Marzyeh Ghassemi
Tristan Naumann
Peter F. Schulam
Andrew L. Beam
Irene Y. Chen
Rajesh Ranganath
92
272
0
01 Jun 2018
Boolean Decision Rules via Column Generation
S. Dash
Oktay Gunluk
Dennis L. Wei
77
175
0
24 May 2018
A review of possible effects of cognitive biases on the interpretation of rule-based machine learning models
Tomáš Kliegr
Š. Bahník
Johannes Furnkranz
106
105
0
09 Apr 2018
Previous
1
2
3
4
5
Next