Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1510.02175
Cited By
Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network
8 October 2015
Bai Jiang
Tung-Yu Wu
Charles Yang Zheng
W. Wong
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network"
21 / 21 papers shown
Title
ConDiSim: Conditional Diffusion Models for Simulation Based Inference
Mayank Nautiyal
Andreas Hellander
Prashant Singh
DiffM
32
0
0
13 May 2025
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
85
9
0
17 Feb 2025
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
51
0
0
10 Oct 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
36
15
0
04 Oct 2023
Minimax optimal testing by classification
P. R. Gerber
Yanjun Han
Yury Polyanskiy
33
3
0
19 Jun 2023
Robustness to Label Noise Depends on the Shape of the Noise Distribution in Feature Space
Diane Oyen
Michal Kucer
N. Hengartner
H. Singh
NoLa
OOD
36
13
0
02 Jun 2022
pyABC: Efficient and robust easy-to-use approximate Bayesian computation
Yannik Schälte
Emmanuel Klinger
Emad Alamoudi
Jan Hasenauer
19
22
0
24 Mar 2022
Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
32
9
0
23 Feb 2022
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
33
31
0
25 Nov 2021
TIP: Task-Informed Motion Prediction for Intelligent Vehicles
Xin Huang
Guy Rosman
A. Jasour
Stephen G. McGill
J. Leonard
B. Williams
40
15
0
17 Oct 2021
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
26
50
0
29 Jul 2021
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
30
79
0
20 Oct 2020
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation
Mattias Åkesson
Prashant Singh
Fredrik Wrede
Andreas Hellander
BDL
30
33
0
31 Jan 2020
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
37
14
0
26 Aug 2019
Spectral Density-Based and Measure-Preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
E. Buckwar
M. Tamborrino
I. Tubikanec
21
36
0
04 Mar 2019
Adaptive Gaussian Copula ABC
Yanzhi Chen
Michael U. Gutmann
TPM
23
27
0
27 Feb 2019
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
Samuel Wiqvist
Pierre-Alexandre Mattei
Umberto Picchini
J. Frellsen
BDL
30
32
0
29 Jan 2019
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
Ritabrata Dutta
Marcel Schoengens
Lorenzo Pacchiardi
Avinash Ummadisingu
Nicole Widmer
Pierre Künzli
J. Onnela
Antonietta Mira
34
25
0
13 Nov 2017
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
34
240
0
06 Nov 2017
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
42
145
0
30 Nov 2016
1