ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.02175
  4. Cited By
Learning Summary Statistic for Approximate Bayesian Computation via Deep
  Neural Network

Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network

8 October 2015
Bai Jiang
Tung-Yu Wu
Charles Yang Zheng
W. Wong
    BDL
ArXivPDFHTML

Papers citing "Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network"

21 / 21 papers shown
Title
ConDiSim: Conditional Diffusion Models for Simulation Based Inference
ConDiSim: Conditional Diffusion Models for Simulation Based Inference
Mayank Nautiyal
Andreas Hellander
Prashant Singh
DiffM
32
0
0
13 May 2025
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
85
9
0
17 Feb 2025
Deep Generative Quantile Bayes
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
51
0
0
10 Oct 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
36
15
0
04 Oct 2023
Minimax optimal testing by classification
Minimax optimal testing by classification
P. R. Gerber
Yanjun Han
Yury Polyanskiy
33
3
0
19 Jun 2023
Robustness to Label Noise Depends on the Shape of the Noise Distribution
  in Feature Space
Robustness to Label Noise Depends on the Shape of the Noise Distribution in Feature Space
Diane Oyen
Michal Kucer
N. Hengartner
H. Singh
NoLa
OOD
36
13
0
02 Jun 2022
pyABC: Efficient and robust easy-to-use approximate Bayesian computation
pyABC: Efficient and robust easy-to-use approximate Bayesian computation
Yannik Schälte
Emmanuel Klinger
Emad Alamoudi
Jan Hasenauer
19
22
0
24 Mar 2022
Amortised Likelihood-free Inference for Expensive Time-series Simulators
  with Signatured Ratio Estimation
Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
32
9
0
23 Feb 2022
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
33
31
0
25 Nov 2021
TIP: Task-Informed Motion Prediction for Intelligent Vehicles
TIP: Task-Informed Motion Prediction for Intelligent Vehicles
Xin Huang
Guy Rosman
A. Jasour
Stephen G. McGill
J. Leonard
B. Williams
40
15
0
17 Oct 2021
Neural Networks for Parameter Estimation in Intractable Models
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
26
50
0
29 Jul 2021
Neural Approximate Sufficient Statistics for Implicit Models
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
30
79
0
20 Oct 2020
Convolutional Neural Networks as Summary Statistics for Approximate
  Bayesian Computation
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation
Mattias Åkesson
Prashant Singh
Fredrik Wrede
Andreas Hellander
BDL
30
33
0
31 Jan 2020
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
37
14
0
26 Aug 2019
Spectral Density-Based and Measure-Preserving ABC for partially observed
  diffusion processes. An illustration on Hamiltonian SDEs
Spectral Density-Based and Measure-Preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
E. Buckwar
M. Tamborrino
I. Tubikanec
21
36
0
04 Mar 2019
Adaptive Gaussian Copula ABC
Adaptive Gaussian Copula ABC
Yanzhi Chen
Michael U. Gutmann
TPM
23
27
0
27 Feb 2019
Partially Exchangeable Networks and Architectures for Learning Summary
  Statistics in Approximate Bayesian Computation
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
Samuel Wiqvist
Pierre-Alexandre Mattei
Umberto Picchini
J. Frellsen
BDL
30
32
0
29 Jan 2019
INFERNO: Inference-Aware Neural Optimisation
INFERNO: Inference-Aware Neural Optimisation
P. D. Castro
T. Dorigo
24
47
0
12 Jun 2018
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian
  Computation
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
Ritabrata Dutta
Marcel Schoengens
Lorenzo Pacchiardi
Avinash Ummadisingu
Nicole Widmer
Pierre Künzli
J. Onnela
Antonietta Mira
34
25
0
13 Nov 2017
Flexible statistical inference for mechanistic models of neural dynamics
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
34
240
0
06 Nov 2017
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
42
145
0
30 Nov 2016
1