Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.03025
Cited By
Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees
10 September 2015
Yudong Chen
Martin J. Wainwright
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees"
50 / 57 papers shown
Title
Euclidean Distance Matrix Completion via Asymmetric Projected Gradient Descent
Yicheng Li
Xinghua Sun
39
0
0
28 Apr 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
45
36
0
13 Apr 2025
Riemannian Optimization on Relaxed Indicator Matrix Manifold
Jinghui Yuan
Fangyuan Xie
Feiping Nie
Xuelong Li
75
0
0
26 Mar 2025
Matrix Completion with Graph Information: A Provable Nonconvex Optimization Approach
Yao Wang
Yiyang Yang
Kaidong Wang
Shanxing Gao
Xiuwu Liao
63
0
0
12 Feb 2025
Exploiting Observation Bias to Improve Matrix Completion
Yassir Jedra
Sean Mann
Charlotte Park
Devavrat Shah
40
1
0
03 Jan 2025
COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection
Jinqi Xiao
S. Sang
Tiancheng Zhi
Jing Liu
Qing Yan
Linjie Luo
Bo Yuan
Bo Yuan
VLM
103
1
0
26 Nov 2024
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
Roy Miles
Pradyumna Reddy
Ismail Elezi
Jiankang Deng
VLM
43
3
0
28 May 2024
GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection
Jiawei Zhao
Zhenyu Zhang
Beidi Chen
Zhangyang Wang
A. Anandkumar
Yuandong Tian
43
178
0
06 Mar 2024
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent
Zhiyu Liu
Zhi Han
Yandong Tang
Xi-Le Zhao
Yao Wang
50
1
0
22 Jan 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Semiparametric Modeling and Analysis for Longitudinal Network Data
Yinqiu He
Jiajin Sun
Yuang Tian
Z. Ying
Yang Feng
39
1
0
23 Aug 2023
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Marcelo Fiori
Bernardo Marenco
Federico Larroca
P. Bermolen
Gonzalo Mateos
BDL
27
3
0
25 Jul 2023
PDPP: Projected Diffusion for Procedure Planning in Instructional Videos
Hanlin Wang
Yilu Wu
Sheng Guo
Limin Wang
VGen
DiffM
73
30
0
26 Mar 2023
Subspace based Federated Unlearning
Guang-Ming Li
Li Shen
Yan Sun
Yuejun Hu
Han Hu
Dacheng Tao
MU
FedML
28
20
0
24 Feb 2023
Approximate message passing from random initialization with applications to
Z
2
\mathbb{Z}_{2}
Z
2
synchronization
Gen Li
Wei Fan
Yuting Wei
26
10
0
07 Feb 2023
Matrix Estimation for Individual Fairness
Cindy Y. Zhang
Sarah H. Cen
Devavrat Shah
FaML
36
4
0
04 Feb 2023
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
24
6
0
29 Sep 2022
A Validation Approach to Over-parameterized Matrix and Image Recovery
Lijun Ding
Zhen Qin
Liwei Jiang
Jinxin Zhou
Zhihui Zhu
48
13
0
21 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
27
10
0
24 Aug 2022
Optimal tuning-free convex relaxation for noisy matrix completion
Yuepeng Yang
Cong Ma
28
8
0
12 Jul 2022
Robust Matrix Completion with Heavy-tailed Noise
Bingyan Wang
Jianqing Fan
21
4
0
09 Jun 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
On Asymptotic Linear Convergence of Projected Gradient Descent for Constrained Least Squares
Trung Vu
Raviv Raich
27
13
0
22 Dec 2021
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect
Yuqing Wang
Minshuo Chen
T. Zhao
Molei Tao
AI4CE
57
40
0
07 Oct 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
33
9
0
03 Aug 2021
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search
Kartik Hegde
Po-An Tsai
Sitao Huang
Vikas Chandra
A. Parashar
Christopher W. Fletcher
26
90
0
02 Mar 2021
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent
Trung Vu
Raviv Raich
40
10
0
04 Feb 2021
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
44
165
0
15 Dec 2020
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
Randomized Value Functions via Posterior State-Abstraction Sampling
Dilip Arumugam
Benjamin Van Roy
OffRL
31
7
0
05 Oct 2020
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai
H. Vincent Poor
Yuxin Chen
13
23
0
15 Jun 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
115
0
18 May 2020
Policy Optimization for
H
2
\mathcal{H}_2
H
2
Linear Control with
H
∞
\mathcal{H}_\infty
H
∞
Robustness Guarantee: Implicit Regularization and Global Convergence
Kaipeng Zhang
Bin Hu
Tamer Basar
24
119
0
21 Oct 2019
Harnessing Structures for Value-Based Planning and Reinforcement Learning
Yuzhe Yang
Guo Zhang
Zhi Xu
Dina Katabi
OffRL
27
31
0
26 Sep 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
10
168
0
28 May 2019
On Robustness of Principal Component Regression
Anish Agarwal
Devavrat Shah
Dennis Shen
Dogyoon Song
29
81
0
28 Feb 2019
A Dictionary-Based Generalization of Robust PCA with Applications to Target Localization in Hyperspectral Imaging
Sirisha Rambhatla
Xingguo Li
Jineng Ren
Jarvis Haupt
19
2
0
21 Feb 2019
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Yuling Yan
20
128
0
20 Feb 2019
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
97
0
14 Jun 2018
Provably convergent acceleration in factored gradient descent with applications in matrix sensing
Tayo Ajayi
David Mildebrath
Anastasios Kyrillidis
Shashanka Ubaru
Georgios Kollias
K. Bouchard
18
1
0
01 Jun 2018
No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis
Rong Ge
Chi Jin
Yi Zheng
47
433
0
03 Apr 2017
Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization
Xingguo Li
Junwei Lu
R. Arora
Jarvis Haupt
Han Liu
Zhaoran Wang
T. Zhao
43
52
0
29 Dec 2016
A Unified Computational and Statistical Framework for Nonconvex Low-Rank Matrix Estimation
Lingxiao Wang
Xiao Zhang
Quanquan Gu
16
80
0
17 Oct 2016
Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach
Dohyung Park
Anastasios Kyrillidis
C. Caramanis
Sujay Sanghavi
23
179
0
12 Sep 2016
Solving a Mixture of Many Random Linear Equations by Tensor Decomposition and Alternating Minimization
Xinyang Yi
C. Caramanis
Sujay Sanghavi
27
59
0
19 Aug 2016
Fast Algorithms for Robust PCA via Gradient Descent
Xinyang Yi
Dohyung Park
Yudong Chen
C. Caramanis
24
265
0
25 May 2016
Matrix Completion has No Spurious Local Minimum
Rong Ge
J. Lee
Tengyu Ma
25
596
0
24 May 2016
Global Optimality of Local Search for Low Rank Matrix Recovery
Srinadh Bhojanapalli
Behnam Neyshabur
Nathan Srebro
ODL
39
386
0
23 May 2016
Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent
Qinqing Zheng
John D. Lafferty
34
160
0
23 May 2016
1
2
Next