59
11

Approximate message passing from random initialization with applications to Z2\mathbb{Z}_{2} synchronization

Abstract

This paper is concerned with the problem of reconstructing an unknown rank-one matrix with prior structural information from noisy observations. While computing the Bayes-optimal estimator seems intractable in general due to its nonconvex nature, Approximate Message Passing (AMP) emerges as an efficient first-order method to approximate the Bayes-optimal estimator. However, the theoretical underpinnings of AMP remain largely unavailable when it starts from random initialization, a scheme of critical practical utility. Focusing on a prototypical model called Z2\mathbb{Z}_{2} synchronization, we characterize the finite-sample dynamics of AMP from random initialization, uncovering its rapid global convergence. Our theory provides the first non-asymptotic characterization of AMP in this model without requiring either an informative initialization (e.g., spectral initialization) or sample splitting.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.