Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1508.04409
Cited By
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
18 August 2015
Marvin N. Wright
A. Ziegler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R"
50 / 227 papers shown
Title
(Decision and regression) tree ensemble based kernels for regression and classification
Dai Feng
R. Baumgartner
25
2
0
19 Dec 2020
Two-Step Meta-Learning for Time-Series Forecasting Ensemble
E. Vaičiukynas
Paulius Danėnas
Vilius Kontrimas
Rimantas Butleris
AI4TS
9
9
0
20 Nov 2020
Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders
Yuhao Wang
Rajen Dinesh Shah
100
15
0
17 Nov 2020
Early Anomaly Detection in Time Series: A Hierarchical Approach for Predicting Critical Health Episodes
Vítor Cerqueira
Luís Torgo
Carlos Soares
AI4TS
11
8
0
22 Oct 2020
Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring
Michael Bücker
G. Szepannek
Alicja Gosiewska
P. Biecek
FaML
22
109
0
28 Sep 2020
Random boosting and random^2 forests -- A random tree depth injection approach
T. Krabel
Thi Ngoc Tien Tran
A. Groll
Daniel Horn
Carsten Jentsch
24
0
0
13 Sep 2020
Random Forest (RF) Kernel for Regression, Classification and Survival
Dai Feng
R. Baumgartner
23
3
0
31 Aug 2020
MementoML: Performance of selected machine learning algorithm configurations on OpenML100 datasets
Wojciech Kretowicz
P. Biecek
6
3
0
30 Aug 2020
Feature Selection Methods for Cost-Constrained Classification in Random Forests
R. Jagdhuber
Michel Lang
Jörg Rahnenführer
11
1
0
14 Aug 2020
Estimating NBA players salary share according to their performance on court: A machine learning approach
I. Papadaki
M. Tsagris
6
1
0
29 Jul 2020
A unified machine learning approach to time series forecasting applied to demand at emergency departments
Michaela Vollmer
Ben Glampson
T. Mellan
Swapnil Mishra
Luca Mercuri
Ceire Costello
R. Klaber
G. Cooke
Seth Flaxman
Samir Bhatt
OOD
AI4TS
23
40
0
13 Jul 2020
Discovering Drug-Drug and Drug-Disease Interactions Inducing Acute Kidney Injury Using Deep Rule Forests
Bowen Kuo
Yihuang Kang
Pinghsung Wu
Sheng-Tai Huang
Yajie Huang
5
2
0
04 Jul 2020
A General Machine Learning Framework for Survival Analysis
Andreas Bender
David Rügamer
Fabian Scheipl
B. Bischl
CML
6
27
0
27 Jun 2020
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
Edward Raff
Charles K. Nicholas
AAML
29
54
0
15 Jun 2020
Generalizing Gain Penalization for Feature Selection in Tree-based Models
Bruna D. Wundervald
Andrew C. Parnell
Katarina Domijan
22
6
0
12 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
35
39
0
29 May 2020
Optimal survival trees ensemble
Naz Gul
Nosheen Faiz
D. Brawn
Rafał Kułakowski
Zardad Khan
B. Lausen
6
3
0
18 May 2020
Sequential Aggregation of Probabilistic Forecasts -- Applicaton to Wind Speed Ensemble Forecasts
M. Zamo
L. Bel
O. Mestre
AI4TS
12
19
0
07 May 2020
A framework for probabilistic weather forecast post-processing across models and lead times using machine learning
Charlie Kirkwood
T. Economou
H. Odbert
N. Pugeault
17
33
0
06 May 2020
DriveML: An R Package for Driverless Machine Learning
Sayan Putatunda
Dayanand Ubrangala
Kiran Rama
R. Kondapalli
6
0
0
01 May 2020
Multiple imputation using chained random forests: a preliminary study based on the empirical distribution of out-of-bag prediction errors
Shangzhi Hong
Yuqi Sun
Hanying Li
H. Lynn
AI4CE
20
1
0
30 Apr 2020
Interpretable Random Forests via Rule Extraction
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
20
58
0
29 Apr 2020
From unbiased MDI Feature Importance to Explainable AI for Trees
Markus Loecher
FAtt
16
5
0
26 Mar 2020
Large-scale benchmark study of survival prediction methods using multi-omics data
Moritz Herrmann
Philipp Probst
R. Hornung
V. Jurinovic
A. Boulesteix
14
77
0
07 Mar 2020
Unbiased variable importance for random forests
Markus Loecher
FAtt
55
53
0
04 Mar 2020
Who Wins the Game of Thrones? How Sentiments Improve the Prediction of Candidate Choice
Chaehan So
12
0
0
29 Feb 2020
Stochastic tree ensembles for regularized nonlinear regression
Jingyu He
Richard Hahn
12
30
0
09 Feb 2020
A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome Prediction
Hanbiehn Kim
Hieu Nguyen
Qingchu Jin
Sharmila Tamby
Tatiana Gelaf Romer
...
J. Greenstein
J. Suarez
C. Storm
R. Winslow
R. Stevens
39
6
0
09 Feb 2020
Explainable outlier detection through decision tree conditioning
David Cortes
16
7
0
02 Jan 2020
Fair Data Adaptation with Quantile Preservation
Drago Plečko
N. Meinshausen
14
28
0
15 Nov 2019
Selective machine learning of doubly robust functionals
Yifan Cui
E. T. Tchetgen
OOD
24
23
0
05 Nov 2019
Silas: High Performance, Explainable and Verifiable Machine Learning
Hadrien Bride
Zhe Hou
Jie Dong
J. Dong
Seyedali Mirjalili
21
7
0
03 Oct 2019
Model-Agnostic Linear Competitors -- When Interpretable Models Compete and Collaborate with Black-Box Models
Hassan Rafique
Tong Wang
Qihang Lin
14
4
0
23 Sep 2019
Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms
Hristos Tyralis
Georgia Papacharalampous
A. Langousis
AI4TS
18
12
0
09 Sep 2019
Machine learning for automatic construction of pseudo-realistic pediatric abdominal phantoms
M. Virgolin
Ziyuan Wang
Tanja Alderliesten
Peter A. N. Bosman
14
2
0
09 Sep 2019
Locally Optimized Random Forests
T. Coleman
K. Kaufeld
M. Dorn
L. Mentch
18
0
0
27 Aug 2019
Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks
Maximilian Pichler
V. Boreux
A. Klein
M. Schleuning
F. Hartig
16
100
0
26 Aug 2019
SIRUS: Stable and Interpretable RUle Set for Classification
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
42
9
0
19 Aug 2019
Maize Yield and Nitrate Loss Prediction with Machine Learning Algorithms
Mohsen Shahhosseini
R. Martinez-Feria
Guiping Hu
S. Archontoulis
20
153
0
14 Aug 2019
On Explaining Machine Learning Models by Evolving Crucial and Compact Features
M. Virgolin
Tanja Alderliesten
Peter A. N. Bosman
19
28
0
04 Jul 2019
A Debiased MDI Feature Importance Measure for Random Forests
Xiao Li
Yu Wang
Sumanta Basu
Karl Kumbier
Bin Yu
27
83
0
26 Jun 2019
Linear Aggregation in Tree-based Estimators
Sören R. Künzel
Theo Saarinen
Edward W. Liu
Jasjeet Sekhon
23
10
0
15 Jun 2019
Hybrid Machine Learning Forecasts for the FIFA Women's World Cup 2019
A. Groll
Christophe Ley
G. Schauberger
Hans Van Eetvelde
A. Zeileis
17
6
0
03 Jun 2019
Evaluating time series forecasting models: An empirical study on performance estimation methods
Vítor Cerqueira
Luís Torgo
I. Mozetič
AI4TS
11
245
0
28 May 2019
Scalable and Efficient Hypothesis Testing with Random Forests
T. Coleman
Wei Peng
L. Mentch
31
17
0
16 Apr 2019
High Dimensional Restrictive Federated Model Selection with multi-objective Bayesian Optimization over shifted distributions
Xudong Sun
Andrea Bommert
Florian Pfisterer
Jörg Rahnenführer
Michel Lang
B. Bischl
FedML
19
12
0
24 Feb 2019
On the consistency of supervised learning with missing values
Julie Josse
Jacob M. Chen
Nicolas Prost
Erwan Scornet
Gaël Varoquaux
28
113
0
19 Feb 2019
Survival Forests under Test: Impact of the Proportional Hazards Assumption on Prognostic and Predictive Forests for ALS Survival
N. Korepanova
H. Seibold
Verena Steffen
Torsten Hothorn
33
14
0
05 Feb 2019
Testing Conditional Independence in Supervised Learning Algorithms
David S. Watson
Marvin N. Wright
CML
29
52
0
28 Jan 2019
Empowering individual trait prediction using interactions
D. Gola
I. König
43
5
0
25 Jan 2019
Previous
1
2
3
4
5
Next