ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.04409
  4. Cited By
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R

ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R

18 August 2015
Marvin N. Wright
A. Ziegler
ArXivPDFHTML

Papers citing "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R"

50 / 226 papers shown
Title
Managers versus Machines: Do Algorithms Replicate Human Intuition in
  Credit Ratings?
Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?
M. Harding
Gabriel F. R. Vasconcelos
AIFin
13
0
0
09 Feb 2022
Methodology for forecasting and optimization in IEEE-CIS 3rd Technical
  Challenge
Methodology for forecasting and optimization in IEEE-CIS 3rd Technical Challenge
Richard Bean
17
3
0
02 Feb 2022
Hierarchical Shrinkage: improving the accuracy and interpretability of
  tree-based methods
Hierarchical Shrinkage: improving the accuracy and interpretability of tree-based methods
Abhineet Agarwal
Yan Shuo Tan
Omer Ronen
Chandan Singh
Bin-Xia Yu
65
27
0
02 Feb 2022
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit
  Performance
Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance
Gabriel Okasa
CML
19
6
0
30 Jan 2022
Geometry- and Accuracy-Preserving Random Forest Proximities
Geometry- and Accuracy-Preserving Random Forest Proximities
Jake S. Rhodes
Adele Cutler
Kevin R. Moon
27
76
0
29 Jan 2022
Machine Learning for Multi-Output Regression: When should a holistic
  multivariate approach be preferred over separate univariate ones?
Machine Learning for Multi-Output Regression: When should a holistic multivariate approach be preferred over separate univariate ones?
Lena Schmid
Alexander Gerharz
A. Groll
Markus Pauly
17
9
0
14 Jan 2022
Applying Machine Learning and AI Explanations to Analyze Vaccine
  Hesitancy
Applying Machine Learning and AI Explanations to Analyze Vaccine Hesitancy
C. Lange
J. Lange
24
1
0
07 Jan 2022
Using Sequential Statistical Tests for Efficient Hyperparameter Tuning
Using Sequential Statistical Tests for Efficient Hyperparameter Tuning
P. Buczak
A. Groll
Markus Pauly
J. Rehof
Daniel Horn
32
1
0
23 Dec 2021
Confidence intervals for the random forest generalization error
Confidence intervals for the random forest generalization error
Paulo Cilas Cilas Marques Filho
UQCV
AI4CE
36
10
0
11 Dec 2021
Avoiding C-hacking when evaluating survival distribution predictions
  with discrimination measures
Avoiding C-hacking when evaluating survival distribution predictions with discrimination measures
R. Sonabend
Andreas Bender
Sandra Jeanne Vollmer
8
16
0
09 Dec 2021
Automated Benchmark-Driven Design and Explanation of Hyperparameter
  Optimizers
Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers
Julia Moosbauer
Martin Binder
Lennart Schneider
Florian Pfisterer
Marc Becker
Michel Lang
Lars Kotthoff
Bernd Bischl
13
7
0
29 Nov 2021
Using Shapley Values and Variational Autoencoders to Explain Predictive
  Models with Dependent Mixed Features
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
32
17
0
26 Nov 2021
Predicting Mortality from Credit Reports
Predicting Mortality from Credit Reports
G. Giorgi
M. Harding
Gabriel F. R. Vasconcelos
18
3
0
05 Nov 2021
On Wasted Contributions: Understanding the Dynamics of
  Contributor-Abandoned Pull Requests
On Wasted Contributions: Understanding the Dynamics of Contributor-Abandoned Pull Requests
SayedHassan Khatoonabadi
D. Costa
Rabe Abdalkareem
Emad Shihab
35
15
0
28 Oct 2021
mlr3spatiotempcv: Spatiotemporal resampling methods for machine learning
  in R
mlr3spatiotempcv: Spatiotemporal resampling methods for machine learning in R
P. Schratz
Marc Becker
Michel Lang
A. Brenning
39
6
0
25 Oct 2021
fairadapt: Causal Reasoning for Fair Data Pre-processing
fairadapt: Causal Reasoning for Fair Data Pre-processing
Drago Plečko
Nicolas Bennett
N. Meinshausen
FaML
8
8
0
19 Oct 2021
A cautionary tale on fitting decision trees to data from additive
  models: generalization lower bounds
A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds
Yan Shuo Tan
Abhineet Agarwal
Bin Yu
21
10
0
18 Oct 2021
Personalized Online Machine Learning
Personalized Online Machine Learning
Ivana Malenica
Rachael V. Phillips
R. Pirracchio
Antoine Chambaz
A. Hubbard
Mark van der Laan
13
1
0
21 Sep 2021
Adoption and Actual Privacy of Decentralized CoinJoin Implementations in
  Bitcoin
Adoption and Actual Privacy of Decentralized CoinJoin Implementations in Bitcoin
Rainer Stütz
Johann Stockinger
Bernhard Haslhofer
Pedro A. Moreno-Sánchez
Matteo Maffei
13
8
0
21 Sep 2021
Graph-guided random forest for gene set selection
Graph-guided random forest for gene set selection
Bastian Pfeifer
Hubert Baniecki
Anna Saranti
P. Biecek
Andreas Holzinger
41
18
0
26 Aug 2021
A Framework for an Assessment of the Kernel-target Alignment in Tree
  Ensemble Kernel Learning
A Framework for an Assessment of the Kernel-target Alignment in Tree Ensemble Kernel Learning
Dai Feng
R. Baumgartner
29
0
0
19 Aug 2021
Accounting for shared covariates in semi-parametric Bayesian additive
  regression trees
Accounting for shared covariates in semi-parametric Bayesian additive regression trees
E. Prado
Andrew C. Parnell
Keefe Murphy
Nathan McJames
Ann O'Shea
R. Moral
34
2
0
17 Aug 2021
One-step ahead sequential Super Learning from short times series of many
  slightly dependent data, and anticipating the cost of natural disasters
One-step ahead sequential Super Learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters
Geoffrey Ecoto
Aurélien F. Bibaut
Antoine Chambaz
AI4TS
29
7
0
28 Jul 2021
Experimental Investigation and Evaluation of Model-based Hyperparameter
  Optimization
Experimental Investigation and Evaluation of Model-based Hyperparameter Optimization
Eva Bartz
Martin Zaefferer
Olaf Mersmann
T. Bartz-Beielstein
16
2
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Test for non-negligible adverse shifts
Test for non-negligible adverse shifts
Vathy M. Kamulete
20
3
0
07 Jul 2021
Mutation is all you need
Mutation is all you need
Lennart Schneider
Florian Pfisterer
Martin Binder
B. Bischl
BDL
60
4
0
04 Jul 2021
Towards Model-informed Precision Dosing with Expert-in-the-loop Machine
  Learning
Towards Model-informed Precision Dosing with Expert-in-the-loop Machine Learning
Yihuang Kang
Y. Chiu
Ming-Yen Lin
F. Su
Sheng-Tai Huang
30
2
0
28 Jun 2021
Functional Classwise Principal Component Analysis: A Novel
  Classification Framework
Functional Classwise Principal Component Analysis: A Novel Classification Framework
A. Chatterjee
Satyaki Mazumder
Koel Das
11
0
0
26 Jun 2021
groupShapley: Efficient prediction explanation with Shapley values for
  feature groups
groupShapley: Efficient prediction explanation with Shapley values for feature groups
Martin Jullum
Annabelle Redelmeier
K. Aas
TDI
FAtt
17
20
0
23 Jun 2021
Machine learning methods for postprocessing ensemble forecasts of wind
  gusts: A systematic comparison
Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison
Benedikt Schulz
Sebastian Lerch
13
76
0
17 Jun 2021
RFpredInterval: An R Package for Prediction Intervals with Random
  Forests and Boosted Forests
RFpredInterval: An R Package for Prediction Intervals with Random Forests and Boosted Forests
Cansu Alakus
Denis Larocque
A. Labbe
16
2
0
15 Jun 2021
Meta-Learning for Symbolic Hyperparameter Defaults
Meta-Learning for Symbolic Hyperparameter Defaults
Pieter Gijsbers
Florian Pfisterer
Jan N. van Rijn
B. Bischl
Joaquin Vanschoren
11
8
0
10 Jun 2021
Hybrid Machine Learning Forecasts for the UEFA EURO 2020
Hybrid Machine Learning Forecasts for the UEFA EURO 2020
A. Groll
L. M. Hvattum
Christophe Ley
Franziska Popp
G. Schauberger
Hans Van Eetvelde
A. Zeileis
29
6
0
07 Jun 2021
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
35
32
0
25 May 2021
Using Machine Learning Techniques to Identify Key Risk Factors for
  Diabetes and Undiagnosed Diabetes
Using Machine Learning Techniques to Identify Key Risk Factors for Diabetes and Undiagnosed Diabetes
Avraham Adler
19
2
0
19 May 2021
Business analytics meets artificial intelligence: Assessing the demand
  effects of discounts on Swiss train tickets
Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets
M. Huber
Jonas Meier
H. Wallimann
CML
20
19
0
04 May 2021
Model Compression for Dynamic Forecast Combination
Model Compression for Dynamic Forecast Combination
Vítor Cerqueira
Luís Torgo
Carlos Soares
Albert Bifet
AI4TS
AI4CE
15
4
0
05 Apr 2021
Regularized target encoding outperforms traditional methods in
  supervised machine learning with high cardinality features
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features
F. Pargent
Florian Pfisterer
Janek Thomas
B. Bischl
18
81
0
01 Apr 2021
Model Selection for Time Series Forecasting: Empirical Analysis of
  Different Estimators
Model Selection for Time Series Forecasting: Empirical Analysis of Different Estimators
Vítor Cerqueira
Luís Torgo
Carlos Soares
AI4TS
15
6
0
01 Apr 2021
fairmodels: A Flexible Tool For Bias Detection, Visualization, And
  Mitigation
fairmodels: A Flexible Tool For Bias Detection, Visualization, And Mitigation
Jakub Wi'sniewski
P. Biecek
26
18
0
01 Apr 2021
On the limits of algorithmic prediction across the globe
On the limits of algorithmic prediction across the globe
Xingyu Li
Difan Song
Miaozhe Han
Yu Zhang
René F. Kizilcec
8
6
0
28 Mar 2021
DoubleML -- An Object-Oriented Implementation of Double Machine Learning
  in R
DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R
Philipp Bach
Victor Chernozhukov
Malte S. Kurz
Martin Spindler
Jan Rabenseifner
GP
31
33
0
17 Mar 2021
MDA for random forests: inconsistency, and a practical solution via the
  Sobol-MDA
MDA for random forests: inconsistency, and a practical solution via the Sobol-MDA
Clément Bénard
Sébastien Da Veiga
Erwan Scornet
47
49
0
26 Feb 2021
Generalised Boosted Forests
Generalised Boosted Forests
Indrayudh Ghosal
Giles Hooker
FedML
25
2
0
24 Feb 2021
Semiparametric counterfactual density estimation
Semiparametric counterfactual density estimation
Edward H. Kennedy
Sivaraman Balakrishnan
Larry A. Wasserman
8
57
0
24 Feb 2021
Variable importance scores
Variable importance scores
Wei-Yin Loh
Peigen Zhou
FAtt
11
29
0
13 Feb 2021
Explaining predictive models using Shapley values and non-parametric
  vine copulas
Explaining predictive models using Shapley values and non-parametric vine copulas
K. Aas
T. Nagler
Martin Jullum
Anders Løland
FAtt
19
19
0
12 Feb 2021
Random Planted Forest: a directly interpretable tree ensemble
Random Planted Forest: a directly interpretable tree ensemble
M. Hiabu
E. Mammen
Josephine T. Meyer
27
5
0
29 Dec 2020
(Decision and regression) tree ensemble based kernels for regression and
  classification
(Decision and regression) tree ensemble based kernels for regression and classification
Dai Feng
R. Baumgartner
25
2
0
19 Dec 2020
Previous
12345
Next