Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1508.02810
Cited By
Convergence rates of sub-sampled Newton methods
12 August 2015
Murat A. Erdogdu
Andrea Montanari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence rates of sub-sampled Newton methods"
29 / 29 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
36
0
0
28 Jan 2025
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
46
1
0
23 Apr 2024
Eva: A General Vectorized Approximation Framework for Second-order Optimization
Lin Zhang
S. Shi
Bo-wen Li
28
1
0
04 Aug 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
31
5
0
01 May 2023
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
26
13
0
17 Jul 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
55
5
0
06 Jun 2022
Augmented Newton Method for Optimization: Global Linear Rate and Momentum Interpretation
M. Morshed
ODL
24
1
0
23 May 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Sen Na
Michal Derezinski
Michael W. Mahoney
27
16
0
20 Apr 2022
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
29
14
0
11 Feb 2022
SCORE: Approximating Curvature Information under Self-Concordant Regularization
Adeyemi Damilare Adeoye
Alberto Bemporad
20
4
0
14 Dec 2021
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update
Michal Derezinski
Jonathan Lacotte
Mert Pilanci
Michael W. Mahoney
40
26
0
15 Jul 2021
Fractal Structure and Generalization Properties of Stochastic Optimization Algorithms
A. Camuto
George Deligiannidis
Murat A. Erdogdu
Mert Gurbuzbalaban
Umut cSimcsekli
Lingjiong Zhu
33
29
0
09 Jun 2021
Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional Optimization: Sharp Analysis and Lower Bounds
Jonathan Lacotte
Mert Pilanci
20
11
0
13 Dec 2020
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
44
55
0
16 Jun 2020
Scalable Second Order Optimization for Deep Learning
Rohan Anil
Vineet Gupta
Tomer Koren
Kevin Regan
Y. Singer
ODL
19
29
0
20 Feb 2020
High-Dimensional Optimization in Adaptive Random Subspaces
Jonathan Lacotte
Mert Pilanci
Marco Pavone
27
16
0
27 Jun 2019
GPU Accelerated Sub-Sampled Newton's Method
Sudhir B. Kylasa
Farbod Roosta-Khorasani
Michael W. Mahoney
A. Grama
ODL
26
8
0
26 Feb 2018
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
J. Lee
Yuekai Sun
32
15
0
28 Aug 2017
Efficient Regret Minimization in Non-Convex Games
Elad Hazan
Karan Singh
Cyril Zhang
19
94
0
31 Jul 2017
Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning
Frank E. Curtis
K. Scheinberg
39
45
0
30 Jun 2017
Sub-sampled Cubic Regularization for Non-convex Optimization
Jonas Köhler
Aurelien Lucchi
19
164
0
16 May 2017
Diving into the shallows: a computational perspective on large-scale shallow learning
Siyuan Ma
M. Belkin
26
76
0
30 Mar 2017
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
24
60
0
14 Mar 2017
An empirical analysis of the optimization of deep network loss surfaces
Daniel Jiwoong Im
Michael Tao
K. Branson
ODL
35
61
0
13 Dec 2016
Exact and Inexact Subsampled Newton Methods for Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
23
176
0
27 Sep 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
17
32
0
24 May 2016
Sub-Sampled Newton Methods II: Local Convergence Rates
Farbod Roosta-Khorasani
Michael W. Mahoney
33
83
0
18 Jan 2016
Newton-Stein Method: An optimization method for GLMs via Stein's Lemma
Murat A. Erdogdu
23
13
0
28 Nov 2015
1