Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1508.02757
Cited By
De-biasing the Lasso: Optimal Sample Size for Gaussian Designs
11 August 2015
Adel Javanmard
Andrea Montanari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"De-biasing the Lasso: Optimal Sample Size for Gaussian Designs"
22 / 22 papers shown
Title
Leave-One-Out Analysis for Nonconvex Robust Matrix Completion with General Thresholding Functions
Tianming Wang
Ke Wei
33
1
0
28 Jul 2024
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning
Frederik Hoppe
C. M. Verdun
Hannah Laus
Felix Krahmer
Holger Rauhut
UQCV
29
1
0
18 Jul 2024
Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects
Masahiro Kato
CML
39
1
0
05 Mar 2024
Inference on Optimal Dynamic Policies via Softmax Approximation
Qizhao Chen
Morgane Austern
Vasilis Syrgkanis
OffRL
29
1
0
08 Mar 2023
Mixed Semi-Supervised Generalized-Linear-Regression with applications to Deep-Learning and Interpolators
Yuval Oren
Saharon Rosset
21
1
0
19 Feb 2023
Distributed Sparse Linear Regression under Communication Constraints
R. Fonseca
B. Nadler
FedML
19
2
0
09 Jan 2023
Uncertainty quantification for sparse Fourier recovery
F. Hoppe
Felix Krahmer
C. M. Verdun
Marion I. Menzel
Holger Rauhut
29
7
0
30 Dec 2022
Simultaneous Inference in Non-Sparse High-Dimensional Linear Models
Yanmei Shi
Zhiruo Li
Q. Zhang
23
0
0
17 Oct 2022
DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R
Philipp Bach
Victor Chernozhukov
Malte S. Kurz
Martin Spindler
Jan Rabenseifner
GP
28
33
0
17 Mar 2021
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
40
165
0
15 Dec 2020
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
42
63
0
27 Jul 2020
The estimation error of general first order methods
Michael Celentano
Andrea Montanari
Yuchen Wu
14
44
0
28 Feb 2020
An Optimal Statistical and Computational Framework for Generalized Tensor Estimation
Rungang Han
Rebecca Willett
Anru R. Zhang
27
65
0
26 Feb 2020
Minimax Semiparametric Learning With Approximate Sparsity
Jelena Bradic
Victor Chernozhukov
Whitney Newey
Yinchu Zhu
50
21
0
27 Dec 2019
De-biasing convex regularized estimators and interval estimation in linear models
Pierre C. Bellec
Cun-Hui Zhang
27
20
0
26 Dec 2019
Online Debiasing for Adaptively Collected High-dimensional Data with Applications to Time Series Analysis
Y. Deshpande
Adel Javanmard
M. Mehrabi
AI4TS
34
31
0
04 Nov 2019
On rank estimators in increasing dimensions
Yanqin Fan
Fang Han
Wei Li
Xiao‐Hua Zhou
25
16
0
14 Aug 2019
Automatic Debiased Machine Learning of Causal and Structural Effects
Victor Chernozhukov
Whitney Newey
Rahul Singh
CML
AI4CE
24
103
0
14 Sep 2018
High-dimensional regression adjustments in randomized experiments
Stefan Wager
Wenfei Du
Jonathan E. Taylor
Robert Tibshirani
40
117
0
22 Jul 2016
Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions
Susan Athey
Guido Imbens
Stefan Wager
CML
35
387
0
25 Apr 2016
SLOPE is Adaptive to Unknown Sparsity and Asymptotically Minimax
Weijie Su
Emmanuel Candes
65
145
0
29 Mar 2015
Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory
Adel Javanmard
Andrea Montanari
112
160
0
17 Jan 2013
1