43
1

Leave-One-Out Analysis for Nonconvex Robust Matrix Completion with General Thresholding Functions

Abstract

We study the problem of robust matrix completion (RMC), where the partially observed entries of an underlying low-rank matrix is corrupted by sparse noise. Existing analysis of the non-convex methods for this problem either requires the explicit but empirically redundant regularization in the algorithm or requires sample splitting in the analysis. In this paper, we consider a simple yet efficient nonconvex method which alternates between a projected gradient step for the low-rank part and a thresholding step for the sparse noise part. Inspired by leave-one out analysis for low rank matrix completion, it is established that the method can achieve linear convergence for a general class of thresholding functions, including for example soft-thresholding and SCAD. To the best of our knowledge, this is the first leave-one-out analysis on a nonconvex method for RMC. Additionally, when applying our result to low rank matrix completion, it improves the sampling complexity of existing result for the singular value projection method.

View on arXiv
@article{wang2025_2407.19446,
  title={ Leave-One-Out Analysis for Nonconvex Robust Matrix Completion with General Thresholding Functions },
  author={ Tianming Wang and Ke Wei },
  journal={arXiv preprint arXiv:2407.19446},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.