ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.08754
  4. Cited By
Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural
  Networks for Image Classification

Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification

31 July 2015
Fan Wu
Peijun Hu
D. Kong
ArXivPDFHTML

Papers citing "Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification"

10 / 10 papers shown
Title
Revisiting Data Augmentation for Rotational Invariance in Convolutional
  Neural Networks
Revisiting Data Augmentation for Rotational Invariance in Convolutional Neural Networks
F. Quiroga
Franco Ronchetti
Laura Lanzarini
A. F. Bariviera
27
34
0
12 Oct 2023
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
13
23
0
11 Jun 2021
LGN-CNN: a biologically inspired CNN architecture
LGN-CNN: a biologically inspired CNN architecture
F. Bertoni
G. Citti
A. Sarti
22
22
0
14 Nov 2019
RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant
  Deep Networks
RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks
Xiuyuan Cheng
Qiang Qiu
Robert Calderbank
Guillermo Sapiro
30
43
0
17 May 2018
Deep Rotation Equivariant Network
Deep Rotation Equivariant Network
Junying Li
Zichen Yang
Haifeng Liu
Deng Cai
26
59
0
24 May 2017
Oriented Response Networks
Oriented Response Networks
Yanzhao Zhou
QiXiang Ye
Qiang Qiu
Jianbin Jiao
27
259
0
07 Jan 2017
Learning rotation invariant convolutional filters for texture
  classification
Learning rotation invariant convolutional filters for texture classification
Diego Marcos
Michele Volpi
D. Tuia
34
148
0
22 Apr 2016
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Sander Dieleman
J. Fauw
Koray Kavukcuoglu
38
364
0
08 Feb 2016
Gradual DropIn of Layers to Train Very Deep Neural Networks
Gradual DropIn of Layers to Train Very Deep Neural Networks
L. Smith
Emily M. Hand
T. Doster
AI4CE
37
33
0
22 Nov 2015
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
270
7,640
0
03 Jul 2012
1