Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1507.08754
Cited By
Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification
31 July 2015
Fan Wu
Peijun Hu
D. Kong
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification"
10 / 10 papers shown
Title
Revisiting Data Augmentation for Rotational Invariance in Convolutional Neural Networks
F. Quiroga
Franco Ronchetti
Laura Lanzarini
A. F. Bariviera
27
34
0
12 Oct 2023
Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales
Ylva Jansson
T. Lindeberg
13
23
0
11 Jun 2021
LGN-CNN: a biologically inspired CNN architecture
F. Bertoni
G. Citti
A. Sarti
22
22
0
14 Nov 2019
RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks
Xiuyuan Cheng
Qiang Qiu
Robert Calderbank
Guillermo Sapiro
30
43
0
17 May 2018
Deep Rotation Equivariant Network
Junying Li
Zichen Yang
Haifeng Liu
Deng Cai
26
59
0
24 May 2017
Oriented Response Networks
Yanzhao Zhou
QiXiang Ye
Qiang Qiu
Jianbin Jiao
27
259
0
07 Jan 2017
Learning rotation invariant convolutional filters for texture classification
Diego Marcos
Michele Volpi
D. Tuia
34
148
0
22 Apr 2016
Exploiting Cyclic Symmetry in Convolutional Neural Networks
Sander Dieleman
J. Fauw
Koray Kavukcuoglu
38
364
0
08 Feb 2016
Gradual DropIn of Layers to Train Very Deep Neural Networks
L. Smith
Emily M. Hand
T. Doster
AI4CE
37
33
0
22 Nov 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
268
7,640
0
03 Jul 2012
1