ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.00210
  4. Cited By
Natural Neural Networks

Natural Neural Networks

1 July 2015
Guillaume Desjardins
Karen Simonyan
Razvan Pascanu
Koray Kavukcuoglu
ArXivPDFHTML

Papers citing "Natural Neural Networks"

49 / 49 papers shown
Title
Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
Minhyuk Seo
Hyunseo Koh
Jonghyun Choi
39
1
0
19 Oct 2024
Efficient Deep Learning with Decorrelated Backpropagation
Efficient Deep Learning with Decorrelated Backpropagation
Sander Dalm
Joshua Offergeld
Nasir Ahmad
Marcel van Gerven
54
4
0
03 May 2024
VNE: An Effective Method for Improving Deep Representation by
  Manipulating Eigenvalue Distribution
VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution
Jaeill Kim
Suhyun Kang
Duhun Hwang
Jungwook Shin
Wonjong Rhee
DRL
13
21
0
04 Apr 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Random initialisations performing above chance and how to find them
Random initialisations performing above chance and how to find them
Frederik Benzing
Simon Schug
Robert Meier
J. Oswald
Yassir Akram
Nicolas Zucchet
Laurence Aitchison
Angelika Steger
ODL
35
24
0
15 Sep 2022
What do CNNs Learn in the First Layer and Why? A Linear Systems
  Perspective
What do CNNs Learn in the First Layer and Why? A Linear Systems Perspective
Rhea Chowers
Yair Weiss
33
2
0
06 Jun 2022
Feedback Gradient Descent: Efficient and Stable Optimization with
  Orthogonality for DNNs
Feedback Gradient Descent: Efficient and Stable Optimization with Orthogonality for DNNs
Fanchen Bu
D. Chang
28
6
0
12 May 2022
Approximate Nearest Neighbor Search under Neural Similarity Metric for
  Large-Scale Recommendation
Approximate Nearest Neighbor Search under Neural Similarity Metric for Large-Scale Recommendation
Rihan Chen
Bin Liu
Ziru Xu
Yao Wang
Qi Li
...
Q. hua
Junliang Jiang
Yunlong Xu
Hongbo Deng
Bo Zheng
40
21
0
14 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order
  Optimization
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
43
23
0
28 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning
  Optimization Landscape
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
25
34
0
20 Jan 2022
Learnable Adaptive Cosine Estimator (LACE) for Image Classification
Learnable Adaptive Cosine Estimator (LACE) for Image Classification
Joshua Peeples
Connor H. McCurley
Sarah Walker
Dylan Stewart
Alina Zare
24
3
0
11 Oct 2021
Powerpropagation: A sparsity inducing weight reparameterisation
Powerpropagation: A sparsity inducing weight reparameterisation
Jonathan Richard Schwarz
Siddhant M. Jayakumar
Razvan Pascanu
P. Latham
Yee Whye Teh
92
54
0
01 Oct 2021
Batch Normalization Preconditioning for Neural Network Training
Batch Normalization Preconditioning for Neural Network Training
Susanna Lange
Kyle E. Helfrich
Qiang Ye
27
9
0
02 Aug 2021
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block
  Inversion
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion
Saeed Soori
Bugra Can
Baourun Mu
Mert Gurbuzbalaban
M. Dehnavi
24
10
0
07 Jun 2021
Stochastic Whitening Batch Normalization
Stochastic Whitening Batch Normalization
Shengdong Zhang
E. Nezhadarya
H. Fashandi
Jiayi Liu
Darin Graham
Mohak Shah
21
10
0
03 Jun 2021
Shapley Explanation Networks
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDI
FAtt
27
44
0
06 Apr 2021
Information Geometry and Classical Cramér-Rao Type Inequalities
Information Geometry and Classical Cramér-Rao Type Inequalities
Kumar Vijay Mishra
M. I. M. Ashok Kumar
16
1
0
02 Apr 2021
EigenGame: PCA as a Nash Equilibrium
EigenGame: PCA as a Nash Equilibrium
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
24
46
0
01 Oct 2020
Group Whitening: Balancing Learning Efficiency and Representational
  Capacity
Group Whitening: Balancing Learning Efficiency and Representational Capacity
Lei Huang
Yi Zhou
Li Liu
Fan Zhu
Ling Shao
28
21
0
28 Sep 2020
Transform Quantization for CNN (Convolutional Neural Network)
  Compression
Transform Quantization for CNN (Convolutional Neural Network) Compression
Sean I. Young
Wang Zhe
David S. Taubman
B. Girod
MQ
29
69
0
02 Sep 2020
Whitening and second order optimization both make information in the
  dataset unusable during training, and can reduce or prevent generalization
Whitening and second order optimization both make information in the dataset unusable during training, and can reduce or prevent generalization
Neha S. Wadia
Daniel Duckworth
S. Schoenholz
Ethan Dyer
Jascha Narain Sohl-Dickstein
27
13
0
17 Aug 2020
Practical Quasi-Newton Methods for Training Deep Neural Networks
Practical Quasi-Newton Methods for Training Deep Neural Networks
D. Goldfarb
Yi Ren
Achraf Bahamou
ODL
10
104
0
16 Jun 2020
Incremental Object Detection via Meta-Learning
Incremental Object Detection via Meta-Learning
K. J. Joseph
Jathushan Rajasegaran
Salman Khan
Fahad Shahbaz Khan
V. Balasubramanian
ObjD
CLL
VLM
177
98
0
17 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Concept Whitening for Interpretable Image Recognition
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
31
314
0
05 Feb 2020
Orthogonal Wasserstein GANs
Orthogonal Wasserstein GANs
J. Müller
Reinhard Klein
Michael Weinmann
48
9
0
29 Nov 2019
Switchable Normalization for Learning-to-Normalize Deep Representation
Switchable Normalization for Learning-to-Normalize Deep Representation
Ping Luo
Ruimao Zhang
Jiamin Ren
Zhanglin Peng
Jingyu Li
30
73
0
22 Jul 2019
Backpropagation-Friendly Eigendecomposition
Backpropagation-Friendly Eigendecomposition
Wei Wang
Zheng Dang
Yinlin Hu
Pascal Fua
Mathieu Salzmann
17
49
0
21 Jun 2019
Natural Option Critic
Natural Option Critic
Saket Tiwari
Philip S. Thomas
17
22
0
04 Dec 2018
Deep Frank-Wolfe For Neural Network Optimization
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
18
40
0
19 Nov 2018
Mode Normalization
Mode Normalization
Lucas Deecke
Iain Murray
Hakan Bilen
OOD
29
33
0
12 Oct 2018
Combining Natural Gradient with Hessian Free Methods for Sequence
  Training
Combining Natural Gradient with Hessian Free Methods for Sequence Training
Adnan Haider
P. Woodland
ODL
20
4
0
03 Oct 2018
Fast Approximate Natural Gradient Descent in a Kronecker-factored
  Eigenbasis
Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis
Thomas George
César Laurent
Xavier Bouthillier
Nicolas Ballas
Pascal Vincent
ODL
29
150
0
11 Jun 2018
Meta-Learning with Hessian-Free Approach in Deep Neural Nets Training
Meta-Learning with Hessian-Free Approach in Deep Neural Nets Training
Boyu Chen
Wenlian Lu
Ernest Fokoue
21
1
0
22 May 2018
Decorrelated Batch Normalization
Decorrelated Batch Normalization
Lei Huang
Dawei Yang
B. Lang
Jia Deng
16
190
0
23 Apr 2018
OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for
  Deep Learning
OLÉ: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning
José Lezama
Qiang Qiu
Pablo Musé
Guillermo Sapiro
35
78
0
05 Dec 2017
Self-Normalizing Neural Networks
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
82
2,485
0
08 Jun 2017
Sharp Minima Can Generalize For Deep Nets
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
46
757
0
15 Mar 2017
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
90
4,873
0
27 Jun 2016
Relative Natural Gradient for Learning Large Complex Models
Relative Natural Gradient for Learning Large Complex Models
Ke Sun
Frank Nielsen
29
5
0
20 Jun 2016
Parametric Exponential Linear Unit for Deep Convolutional Neural
  Networks
Parametric Exponential Linear Unit for Deep Convolutional Neural Networks
Ludovic Trottier
Philippe Giguère
B. Chaib-draa
41
199
0
30 May 2016
Normalization Propagation: A Parametric Technique for Removing Internal
  Covariate Shift in Deep Networks
Normalization Propagation: A Parametric Technique for Removing Internal Covariate Shift in Deep Networks
Devansh Arpit
Yingbo Zhou
Bhargava U. Kota
V. Govindaraju
21
126
0
04 Mar 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
99
1,924
0
25 Feb 2016
Learning values across many orders of magnitude
Learning values across many orders of magnitude
H. V. Hasselt
A. Guez
Matteo Hessel
Volodymyr Mnih
David Silver
17
169
0
24 Feb 2016
A Kronecker-factored approximate Fisher matrix for convolution layers
A Kronecker-factored approximate Fisher matrix for convolution layers
Roger C. Grosse
James Martens
ODL
40
258
0
03 Feb 2016
Scalable Gradient-Based Tuning of Continuous Regularization
  Hyperparameters
Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters
Jelena Luketina
Mathias Berglund
Klaus Greff
T. Raiko
29
173
0
20 Nov 2015
Symmetry-invariant optimization in deep networks
Symmetry-invariant optimization in deep networks
Vijay Badrinarayanan
Bamdev Mishra
R. Cipolla
ODL
19
31
0
05 Nov 2015
Batch Normalized Recurrent Neural Networks
Batch Normalized Recurrent Neural Networks
César Laurent
Gabriel Pereyra
Philemon Brakel
Wenjie Qu
Yoshua Bengio
35
213
0
05 Oct 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
88
43,015
0
11 Feb 2015
1