ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02113
  4. Cited By
Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks
  Using a Polynomial Number of Score Evaluations

Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks Using a Polynomial Number of Score Evaluations

6 June 2015
D. M. Chickering
Christopher Meek
ArXivPDFHTML

Papers citing "Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks Using a Polynomial Number of Score Evaluations"

13 / 13 papers shown
Title
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Juan L. Gamella
Armeen Taeb
C. Heinze-Deml
Peter Buhlmann
CML
111
8
0
13 Mar 2025
ALCM: Autonomous LLM-Augmented Causal Discovery Framework
ALCM: Autonomous LLM-Augmented Causal Discovery Framework
Elahe Khatibi
Mahyar Abbasian
Zhongqi Yang
Iman Azimi
Amir M. Rahmani
88
13
0
02 May 2024
Parameterized Complexity Results for Exact Bayesian Network Structure
  Learning
Parameterized Complexity Results for Exact Bayesian Network Structure Learning
S. Ordyniak
Stefan Szeider
110
64
0
04 Feb 2014
A Transformational Characterization of Equivalent Bayesian Network
  Structures
A Transformational Characterization of Equivalent Bayesian Network Structures
D. M. Chickering
200
417
0
20 Feb 2013
Learning Bayesian Network Structure from Massive Datasets: The "Sparse
  Candidate" Algorithm
Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm
N. Friedman
I. Nachman
Dana Peér
130
654
0
23 Jan 2013
Learning Polytrees
Learning Polytrees
S. Dasgupta
TPM
97
129
0
23 Jan 2013
Enumerating Markov Equivalence Classes of Acyclic Digraph Models
Enumerating Markov Equivalence Classes of Acyclic Digraph Models
S. Gillispie
M. Perlman
78
102
0
10 Jan 2013
Finding Optimal Bayesian Networks
Finding Optimal Bayesian Networks
D. M. Chickering
Christopher Meek
TPM
63
152
0
12 Dec 2012
Large-Sample Learning of Bayesian Networks is NP-Hard
Large-Sample Learning of Bayesian Networks is NP-Hard
D. M. Chickering
Christopher Meek
David Heckerman
BDL
94
792
0
19 Oct 2012
On Finding Optimal Polytrees
On Finding Optimal Polytrees
Serge Gaspers
Mikko Koivisto
M. Liedloff
S. Ordyniak
Stefan Szeider
TPM
78
11
0
08 Aug 2012
PAC-learning bounded tree-width Graphical Models
PAC-learning bounded tree-width Graphical Models
Mukund Narasimhan
J. Bilmes
83
78
0
11 Jul 2012
A simple approach for finding the globally optimal Bayesian network
  structure
A simple approach for finding the globally optimal Bayesian network structure
T. Silander
P. Myllymäki
TPM
77
397
0
27 Jun 2012
Finding a Path is Harder than Finding a Tree
Finding a Path is Harder than Finding a Tree
Christopher Meek
68
21
0
09 Jun 2011
1