ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02004
  4. Cited By
Sparse Overcomplete Word Vector Representations

Sparse Overcomplete Word Vector Representations

5 June 2015
Manaal Faruqui
Yulia Tsvetkov
Dani Yogatama
Chris Dyer
Noah A. Smith
ArXivPDFHTML

Papers citing "Sparse Overcomplete Word Vector Representations"

25 / 25 papers shown
Title
The Complexity of Learning Sparse Superposed Features with Feedback
The Complexity of Learning Sparse Superposed Features with Feedback
Akash Kumar
163
0
0
08 Feb 2025
The Geometry of Tokens in Internal Representations of Large Language Models
The Geometry of Tokens in Internal Representations of Large Language Models
Karthik Viswanathan
Yuri Gardinazzi
Giada Panerai
Alberto Cazzaniga
Matteo Biagetti
AIFin
94
4
0
17 Jan 2025
The Geometry of Concepts: Sparse Autoencoder Feature Structure
The Geometry of Concepts: Sparse Autoencoder Feature Structure
Yuxiao Li
Eric J. Michaud
David D. Baek
Joshua Engels
Xiaoqing Sun
Max Tegmark
52
7
0
10 Oct 2024
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE)
Usha Bhalla
Alexander X. Oesterling
Suraj Srinivas
Flavio du Pin Calmon
Himabindu Lakkaraju
44
35
0
16 Feb 2024
Sparse Autoencoders Find Highly Interpretable Features in Language
  Models
Sparse Autoencoders Find Highly Interpretable Features in Language Models
Hoagy Cunningham
Aidan Ewart
Logan Riggs
R. Huben
Lee Sharkey
MILM
33
335
0
15 Sep 2023
Discovering Universal Geometry in Embeddings with ICA
Discovering Universal Geometry in Embeddings with ICA
Hiroaki Yamagiwa
Momose Oyama
Hidetoshi Shimodaira
31
13
0
22 May 2023
SensePOLAR: Word sense aware interpretability for pre-trained contextual
  word embeddings
SensePOLAR: Word sense aware interpretability for pre-trained contextual word embeddings
Jan Engler
Sandipan Sikdar
Marlene Lutz
M. Strohmaier
32
7
0
11 Jan 2023
Tsetlin Machine Embedding: Representing Words Using Logical Expressions
Tsetlin Machine Embedding: Representing Words Using Logical Expressions
Bimal Bhattarai
Ole-Christoffer Granmo
Lei Jiao
Rohan Kumar Yadav
Jivitesh Sharma
NAI
14
12
0
02 Jan 2023
On the Explainability of Natural Language Processing Deep Models
On the Explainability of Natural Language Processing Deep Models
Julia El Zini
M. Awad
29
82
0
13 Oct 2022
Neuron-level Interpretation of Deep NLP Models: A Survey
Neuron-level Interpretation of Deep NLP Models: A Survey
Hassan Sajjad
Nadir Durrani
Fahim Dalvi
MILM
AI4CE
35
80
0
30 Aug 2021
Ultra-High Dimensional Sparse Representations with Binarization for
  Efficient Text Retrieval
Ultra-High Dimensional Sparse Representations with Binarization for Efficient Text Retrieval
Kyoung-Rok Jang
Junmo Kang
Giwon Hong
Sung-Hyon Myaeng
Joohee Park
Taewon Yoon
Heecheol Seo
39
20
0
15 Apr 2021
Contextualized Sparse Representations for Real-Time Open-Domain Question
  Answering
Contextualized Sparse Representations for Real-Time Open-Domain Question Answering
Jinhyuk Lee
Minjoon Seo
Hannaneh Hajishirzi
Jaewoo Kang
RALM
LRM
13
31
0
07 Nov 2019
Interpretable Word Embeddings via Informative Priors
Interpretable Word Embeddings via Informative Priors
Miriam Hurtado Bodell
Martin Arvidsson
Måns Magnusson
27
18
0
03 Sep 2019
Interpretable Neural Predictions with Differentiable Binary Variables
Interpretable Neural Predictions with Differentiable Binary Variables
Jasmijn Bastings
Wilker Aziz
Ivan Titov
23
211
0
20 May 2019
Analytical Methods for Interpretable Ultradense Word Embeddings
Analytical Methods for Interpretable Ultradense Word Embeddings
Philipp Dufter
Hinrich Schütze
23
25
0
18 Apr 2019
SECNLP: A Survey of Embeddings in Clinical Natural Language Processing
SECNLP: A Survey of Embeddings in Clinical Natural Language Processing
Katikapalli Subramanyam Kalyan
S. Sangeetha
17
82
0
04 Mar 2019
Uncovering divergent linguistic information in word embeddings with
  lessons for intrinsic and extrinsic evaluation
Uncovering divergent linguistic information in word embeddings with lessons for intrinsic and extrinsic evaluation
Mikel Artetxe
Gorka Labaka
I. Lopez-Gazpio
Eneko Agirre
16
41
0
06 Sep 2018
Firearms and Tigers are Dangerous, Kitchen Knives and Zebras are Not:
  Testing whether Word Embeddings Can Tell
Firearms and Tigers are Dangerous, Kitchen Knives and Zebras are Not: Testing whether Word Embeddings Can Tell
Pia Sommerauer
Antske Fokkens
16
27
0
05 Sep 2018
Imparting Interpretability to Word Embeddings while Preserving Semantic
  Structure
Imparting Interpretability to Word Embeddings while Preserving Semantic Structure
Lutfi Kerem Senel
Ihsan Utlu
Furkan Şahinuç
H. Ozaktas
Aykut Kocc
29
14
0
19 Jul 2018
Arabic Named Entity Recognition using Word Representations
Arabic Named Entity Recognition using Word Representations
Ismail El Bazi
Nabil Laachfoubi
18
16
0
16 Apr 2018
Neurogenesis-Inspired Dictionary Learning: Online Model Adaption in a
  Changing World
Neurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World
S. Garg
Irina Rish
Guillermo Cecchi
A. Lozano
OffRL
CLL
23
6
0
22 Jan 2017
A Generative Word Embedding Model and its Low Rank Positive Semidefinite
  Solution
A Generative Word Embedding Model and its Low Rank Positive Semidefinite Solution
Shaohua Li
Jun Zhu
C. Miao
10
29
0
16 Aug 2015
Non-distributional Word Vector Representations
Non-distributional Word Vector Representations
Manaal Faruqui
Chris Dyer
NAI
46
81
0
17 Jun 2015
Visualizing and Understanding Neural Models in NLP
Visualizing and Understanding Neural Models in NLP
Jiwei Li
Xinlei Chen
Eduard H. Hovy
Dan Jurafsky
MILM
FAtt
18
701
0
02 Jun 2015
From Frequency to Meaning: Vector Space Models of Semantics
From Frequency to Meaning: Vector Space Models of Semantics
Peter D. Turney
Patrick Pantel
87
2,980
0
04 Mar 2010
1