LIVEJoin the current RTAI Connect sessionJoin now

42
83

SECNLP: A Survey of Embeddings in Clinical Natural Language Processing

Abstract

Traditional representations like Bag of words are high dimensional, sparse and ignore the order as well as syntactic and semantic information. Distributed vector representations or embeddings map variable length text to dense fixed length vectors as well as capture the prior knowledge which can transferred to downstream tasks. Even though embedding has become de facto standard for representations in deep learning based NLP tasks in both general and clinical domains, there is no survey paper which presents a detailed review of embeddings in Clinical Natural Language Processing. In this survey paper, we discuss various medical corpora and their characteristics, medical codes and present a brief overview as well as comparison of popular embeddings models. We classify clinical embeddings into nine types and discuss each embedding type in detail. We discuss various evaluation methods followed by possible solutions to various challenges in clinical embeddings. Finally, we conclude with some of the future directions which will advance the research in clinical embeddings.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.