Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.02120
Cited By
Bilevel approaches for learning of variational imaging models
8 May 2015
L. Calatroni
C. Chung
J. D. L. Reyes
Carola-Bibiane Schönlieb
T. Valkonen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bilevel approaches for learning of variational imaging models"
19 / 19 papers shown
Title
An incremental algorithm for non-convex AI-enhanced medical image processing
Elena Morotti
34
0
0
13 May 2025
Deep unrolling for learning optimal spatially varying regularisation parameters for Total Generalised Variation
Thanh Trung Vu
Andreas Kofler
Kostas Papafitsoros
35
1
0
23 Feb 2025
Dual Meta-Learning with Longitudinally Generalized Regularization for One-Shot Brain Tissue Segmentation Across the Human Lifespan
Yongheng Sun
Fan Wang
Jun Shu
Haifeng Wang
Li Meng
C. Lian
30
1
0
13 Aug 2023
Generative models and Bayesian inversion using Laplace approximation
M. Marschall
G. Wübbeler
F. Schmähling
Clemens Elster
10
1
0
15 Mar 2022
Bilevel Imaging Learning Problems as Mathematical Programs with Complementarity Constraints: Reformulation and Theory
Juan Carlos de los Reyes
9
5
0
05 Oct 2021
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
E. De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
25
30
0
11 Jun 2021
Learning Regularization Parameters of Inverse Problems via Deep Neural Networks
B. Afkham
Julianne Chung
Matthias Chung
17
42
0
14 Apr 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
50
222
0
27 Jan 2021
Regularized Compression of MRI Data: Modular Optimization of Joint Reconstruction and Coding
Veronica Corona
Yehuda Dar
Guy B. Williams
Carola-Bibiane Schönlieb
MedIm
11
0
0
08 Oct 2020
Consistency analysis of bilevel data-driven learning in inverse problems
Neil K. Chada
C. Schillings
Xin T. Tong
Simon Weissmann
17
8
0
06 Jul 2020
Bilinear Constraint based ADMM for Mixed Poisson-Gaussian Noise Removal
Jie Zhang
Y. Duan
Yue M. Lu
Michael K. Ng
Huibin Chang
11
9
0
18 Oct 2019
Parametric Majorization for Data-Driven Energy Minimization Methods
Jonas Geiping
Michael Moeller
14
4
0
17 Aug 2019
Bilevel Optimization, Deep Learning and Fractional Laplacian Regularization with Applications in Tomography
Harbir Antil
Z. Di
R. Khatri
22
49
0
22 Jul 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Adversarial Regularizers in Inverse Problems
Sebastian Lunz
Ozan Oktem
Carola-Bibiane Schönlieb
GAN
MedIm
20
217
0
29 May 2018
Solving ill-posed inverse problems using iterative deep neural networks
J. Adler
Ozan Oktem
24
615
0
13 Apr 2017
A Variational Bayesian Approach for Image Restoration. Application to Image Deblurring with Poisson-Gaussian Noise
Y. Marnissi
Yuling Zheng
Émilie Chouzenoux
J. Pesquet
16
39
0
24 Oct 2016
Exact and Inexact Subsampled Newton Methods for Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
15
176
0
27 Sep 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
17
441
0
07 Feb 2016
1