ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.02120
  4. Cited By
Bilevel approaches for learning of variational imaging models

Bilevel approaches for learning of variational imaging models

8 May 2015
L. Calatroni
C. Chung
J. D. L. Reyes
Carola-Bibiane Schönlieb
T. Valkonen
ArXivPDFHTML

Papers citing "Bilevel approaches for learning of variational imaging models"

19 / 19 papers shown
Title
An incremental algorithm for non-convex AI-enhanced medical image processing
An incremental algorithm for non-convex AI-enhanced medical image processing
Elena Morotti
34
0
0
13 May 2025
Deep unrolling for learning optimal spatially varying regularisation parameters for Total Generalised Variation
Deep unrolling for learning optimal spatially varying regularisation parameters for Total Generalised Variation
Thanh Trung Vu
Andreas Kofler
Kostas Papafitsoros
35
1
0
23 Feb 2025
Dual Meta-Learning with Longitudinally Generalized Regularization for
  One-Shot Brain Tissue Segmentation Across the Human Lifespan
Dual Meta-Learning with Longitudinally Generalized Regularization for One-Shot Brain Tissue Segmentation Across the Human Lifespan
Yongheng Sun
Fan Wang
Jun Shu
Haifeng Wang
Li Meng
C. Lian
30
1
0
13 Aug 2023
Generative models and Bayesian inversion using Laplace approximation
Generative models and Bayesian inversion using Laplace approximation
M. Marschall
G. Wübbeler
F. Schmähling
Clemens Elster
10
1
0
15 Mar 2022
Bilevel Imaging Learning Problems as Mathematical Programs with
  Complementarity Constraints: Reformulation and Theory
Bilevel Imaging Learning Problems as Mathematical Programs with Complementarity Constraints: Reformulation and Theory
Juan Carlos de los Reyes
9
5
0
05 Oct 2021
Learning the optimal Tikhonov regularizer for inverse problems
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
E. De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
25
30
0
11 Jun 2021
Learning Regularization Parameters of Inverse Problems via Deep Neural
  Networks
Learning Regularization Parameters of Inverse Problems via Deep Neural Networks
B. Afkham
Julianne Chung
Matthias Chung
17
42
0
14 Apr 2021
Investigating Bi-Level Optimization for Learning and Vision from a
  Unified Perspective: A Survey and Beyond
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
50
222
0
27 Jan 2021
Regularized Compression of MRI Data: Modular Optimization of Joint
  Reconstruction and Coding
Regularized Compression of MRI Data: Modular Optimization of Joint Reconstruction and Coding
Veronica Corona
Yehuda Dar
Guy B. Williams
Carola-Bibiane Schönlieb
MedIm
11
0
0
08 Oct 2020
Consistency analysis of bilevel data-driven learning in inverse problems
Consistency analysis of bilevel data-driven learning in inverse problems
Neil K. Chada
C. Schillings
Xin T. Tong
Simon Weissmann
17
8
0
06 Jul 2020
Bilinear Constraint based ADMM for Mixed Poisson-Gaussian Noise Removal
Bilinear Constraint based ADMM for Mixed Poisson-Gaussian Noise Removal
Jie Zhang
Y. Duan
Yue M. Lu
Michael K. Ng
Huibin Chang
11
9
0
18 Oct 2019
Parametric Majorization for Data-Driven Energy Minimization Methods
Parametric Majorization for Data-Driven Energy Minimization Methods
Jonas Geiping
Michael Moeller
14
4
0
17 Aug 2019
Bilevel Optimization, Deep Learning and Fractional Laplacian
  Regularization with Applications in Tomography
Bilevel Optimization, Deep Learning and Fractional Laplacian Regularization with Applications in Tomography
Harbir Antil
Z. Di
R. Khatri
22
49
0
22 Jul 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using
  Structured Best-Response Functions
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Adversarial Regularizers in Inverse Problems
Adversarial Regularizers in Inverse Problems
Sebastian Lunz
Ozan Oktem
Carola-Bibiane Schönlieb
GAN
MedIm
20
217
0
29 May 2018
Solving ill-posed inverse problems using iterative deep neural networks
Solving ill-posed inverse problems using iterative deep neural networks
J. Adler
Ozan Oktem
24
615
0
13 Apr 2017
A Variational Bayesian Approach for Image Restoration. Application to
  Image Deblurring with Poisson-Gaussian Noise
A Variational Bayesian Approach for Image Restoration. Application to Image Deblurring with Poisson-Gaussian Noise
Y. Marnissi
Yuling Zheng
Émilie Chouzenoux
J. Pesquet
16
39
0
24 Oct 2016
Exact and Inexact Subsampled Newton Methods for Optimization
Exact and Inexact Subsampled Newton Methods for Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
15
176
0
27 Sep 2016
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
17
441
0
07 Feb 2016
1