35
5

Bilevel Imaging Learning Problems as Mathematical Programs with Complementarity Constraints: Reformulation and Theory

Abstract

We investigate a family of bilevel imaging learning problems where the lower-level instance corresponds to a convex variational model involving first- and second-order nonsmooth sparsity-based regularizers. By using geometric properties of the primal-dual reformulation of the lower-level problem and introducing suitable auxiliar variables, we are able to reformulate the original bilevel problems as Mathematical Programs with Complementarity Constraints (MPCC). For the latter, we prove tight constraint qualification conditions (MPCC-RCPLD and partial MPCC-LICQ) and derive Mordukhovich (M-) and Strong (S-) stationarity conditions. The stationarity systems for the MPCC turn also into stationarity conditions for the original formulation. Second-order sufficient optimality conditions are derived as well, together with a local uniqueness result for stationary points. The proposed reformulation may be extended to problems in function spaces, leading to MPCC's with constraints on the gradient of the state. The MPCC reformulation also leads to the efficient use of available large-scale nonlinear programming solvers, as shown in a companion paper, where different imaging applications are studied.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.