ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.07791
  4. Cited By
Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian
  Computation

Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation

26 March 2015
Fernando V. Bonassi
M. West
ArXivPDFHTML

Papers citing "Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation"

18 / 18 papers shown
Title
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
118
2
0
17 Jan 2025
Optimal simulation-based Bayesian decisions
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
36
1
0
09 Nov 2023
Sequential Neural Score Estimation: Likelihood-Free Inference with
  Conditional Score Based Diffusion Models
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock
J. Simons
Song Liu
Mark Beaumont
DiffM
64
34
0
10 Oct 2022
Weakly informative priors and prior-data conflict checking for
  likelihood-free inference
Weakly informative priors and prior-data conflict checking for likelihood-free inference
Atlanta Chakraborty
David J. Nott
Michael Evans
22
4
0
21 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
28
42
0
09 Feb 2022
Composite Goodness-of-fit Tests with Kernels
Composite Goodness-of-fit Tests with Kernels
Oscar Key
Arthur Gretton
F. Briol
T. Fernandez
32
14
0
19 Nov 2021
A Comparison of Likelihood-Free Methods With and Without Summary
  Statistics
A Comparison of Likelihood-Free Methods With and Without Summary Statistics
Christopher C. Drovandi
David T. Frazier
34
33
0
03 Mar 2021
Minimax Confidence Intervals for the Sliced Wasserstein Distance
Minimax Confidence Intervals for the Sliced Wasserstein Distance
Tudor Manole
Sivaraman Balakrishnan
Larry A. Wasserman
19
35
0
17 Sep 2019
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
ABC Samplers
ABC Samplers
Y. Fan
Scott A. Sisson
22
28
0
26 Feb 2018
Flexible statistical inference for mechanistic models of neural dynamics
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
34
240
0
06 Nov 2017
On parameter estimation with the Wasserstein distance
On parameter estimation with the Wasserstein distance
Espen Bernton
H. Shakespeare
Mathieu Gerber
Christian P. Robert
42
77
0
18 Jan 2017
Convergence of Regression Adjusted Approximate Bayesian Computation
Convergence of Regression Adjusted Approximate Bayesian Computation
Wentao Li
Paul Fearnhead
116
36
0
22 Sep 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
32
158
0
20 May 2016
Adapting the ABC distance function
Adapting the ABC distance function
D. Prangle
32
94
0
03 Jul 2015
Optimization Monte Carlo: Efficient and Embarrassingly Parallel
  Likelihood-Free Inference
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference
Edward Meeds
Max Welling
27
36
0
11 Jun 2015
Optimizing Threshold - Schedules for Approximate Bayesian Computation
  Sequential Monte Carlo Samplers: Applications to Molecular Systems
Optimizing Threshold - Schedules for Approximate Bayesian Computation Sequential Monte Carlo Samplers: Applications to Molecular Systems
D. Silk
S. Filippi
M. Stumpf
118
11
0
11 Oct 2012
1