ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.02424
  4. Cited By
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs

Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs

9 March 2015
Y. Gal
Richard Turner
ArXivPDFHTML

Papers citing "Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs"

9 / 9 papers shown
Title
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
106
0
0
01 Jul 2024
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
67
150
0
06 Feb 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
101
1,230
0
26 Sep 2013
Variational inference for sparse spectrum Gaussian process regression
Variational inference for sparse spectrum Gaussian process regression
Linda S. L. Tan
V. M. Ong
David J. Nott
Ajay Jasra
97
15
0
09 Jun 2013
Structure Discovery in Nonparametric Regression through Compositional
  Kernel Search
Structure Discovery in Nonparametric Regression through Compositional Kernel Search
David Duvenaud
J. Lloyd
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
80
509
0
20 Feb 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
66
606
0
18 Feb 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
96
1,179
0
02 Nov 2012
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
230
2,619
0
29 Jun 2012
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with
  Application to Active User Modeling and Hierarchical Reinforcement Learning
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
E. Brochu
Vlad M. Cora
Nando de Freitas
GP
131
2,446
0
12 Dec 2010
1