ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.02424
  4. Cited By
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs

Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs

9 March 2015
Y. Gal
Richard Turner
ArXivPDFHTML

Papers citing "Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs"

11 / 11 papers shown
Title
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
79
0
0
01 Jul 2024
Gaussian Process-Gated Hierarchical Mixtures of Experts
Gaussian Process-Gated Hierarchical Mixtures of Experts
Yuhao Liu
Marzieh Ajirak
P. Djuric
MoE
16
1
0
09 Feb 2023
Incremental Ensemble Gaussian Processes
Incremental Ensemble Gaussian Processes
Qin Lu
G. V. Karanikolas
G. Giannakis
53
23
0
13 Oct 2021
Practical Hilbert space approximate Bayesian Gaussian processes for
  probabilistic programming
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Bürkner
Michael R. Andersen
Arno Solin
Aki Vehtari
32
68
0
23 Apr 2020
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
16
9
0
27 Nov 2018
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
17
17
0
10 Oct 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Efficient Bayesian Inference for a Gaussian Process Density Model
Efficient Bayesian Inference for a Gaussian Process Density Model
Christian Donner
Manfred Opper
29
14
0
29 May 2018
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
142
0
14 Oct 2016
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
16
21
0
27 Oct 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
202
745
0
06 Jun 2015
1