Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.01243
Cited By
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
4 March 2015
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights"
50 / 73 papers shown
Title
Accelerated Stein Variational Gradient Flow
Viktor Stein
Wuchen Li
56
0
0
30 Mar 2025
Functional multi-armed bandit and the best function identification problems
Yuriy Dorn
Aleksandr Katrutsa
Ilgam Latypov
Anastasiia Soboleva
32
0
0
01 Mar 2025
Nesterov Acceleration for Ensemble Kalman Inversion and Variants
Sydney Vernon
Eviatar Bach
Oliver R. A. Dunbar
39
1
0
15 Jan 2025
Nesterov acceleration in benignly non-convex landscapes
Kanan Gupta
Stephan Wojtowytsch
36
2
0
10 Oct 2024
Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework
Siyuan Yu
Wei Chen
H. V. Poor
24
0
0
17 Jun 2024
Distributed Event-Based Learning via ADMM
Güner Dilsad Er
Sebastian Trimpe
Michael Muehlebach
FedML
41
2
0
17 May 2024
A General Continuous-Time Formulation of Stochastic ADMM and Its Variants
Chris Junchi Li
20
0
0
22 Apr 2024
Quantum Langevin Dynamics for Optimization
Zherui Chen
Yuchen Lu
Hao Wang
Yizhou Liu
Tongyang Li
AI4CE
21
9
0
27 Nov 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
26
4
0
06 Oct 2023
An Element-wise RSAV Algorithm for Unconstrained Optimization Problems
Shiheng Zhang
Jiahao Zhang
Jie Shen
Guang Lin
26
2
0
07 Sep 2023
Diffusion Sampling with Momentum for Mitigating Divergence Artifacts
Suttisak Wizadwongsa
Worameth Chinchuthakun
Pramook Khungurn
Amit Raj
Supasorn Suwajanakorn
DiffM
39
2
0
20 Jul 2023
A Passivity-Based Method for Accelerated Convex Optimisation
Namhoon Cho
Hyo-Sang Shin
13
0
0
20 Jun 2023
On Underdamped Nesterov's Acceleration
Shu Chen
Bin Shi
Ya-xiang Yuan
19
5
0
28 Apr 2023
Reducing Discretization Error in the Frank-Wolfe Method
Zhaoyue Chen
Yifan Sun
13
1
0
04 Apr 2023
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments
Quoc Tran-Dinh
30
7
0
30 Mar 2023
Quantum Hamiltonian Descent
Jiaqi Leng
Ethan Hickman
Joseph Li
Xiaodi Wu
18
12
0
02 Mar 2023
Accelerated First-Order Optimization under Nonlinear Constraints
Michael Muehlebach
Michael I. Jordan
40
3
0
01 Feb 2023
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurélien Lucchi
23
13
0
19 Jan 2023
A Nonstochastic Control Approach to Optimization
Xinyi Chen
Elad Hazan
47
5
0
19 Jan 2023
Restarts subject to approximate sharpness: A parameter-free and optimal scheme for first-order methods
Ben Adcock
Matthew J. Colbrook
Maksym Neyra-Nesterenko
27
2
0
05 Jan 2023
Effects of Data Geometry in Early Deep Learning
Saket Tiwari
G. Konidaris
69
7
0
29 Dec 2022
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
28
0
0
19 Dec 2022
Proximal Subgradient Norm Minimization of ISTA and FISTA
Bowen Li
Bin Shi
Ya-xiang Yuan
21
11
0
03 Nov 2022
Toward Equation of Motion for Deep Neural Networks: Continuous-time Gradient Descent and Discretization Error Analysis
Taiki Miyagawa
35
9
0
28 Oct 2022
Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models
Hong Liu
Sang Michael Xie
Zhiyuan Li
Tengyu Ma
AI4CE
32
49
0
25 Oct 2022
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Satyen Kale
Jason D. Lee
Chris De Sa
Ayush Sekhari
Karthik Sridharan
24
4
0
13 Oct 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
16
17
0
29 Sep 2022
Gradient Norm Minimization of Nesterov Acceleration:
o
(
1
/
k
3
)
o(1/k^3)
o
(
1/
k
3
)
Shu Chen
Bin Shi
Ya-xiang Yuan
28
15
0
19 Sep 2022
Multilevel Geometric Optimization for Regularised Constrained Linear Inverse Problems
Sebastian Müller
Stefania Petra
Matthias Zisler
AI4CE
13
1
0
11 Jul 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity
Shiyun Xu
Zhiqi Bu
Pratik Chaudhari
Ian J. Barnett
19
21
0
25 Feb 2022
Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for Solving Nonconvex Min-Max Problems
Thinh T. Doan
18
15
0
17 Dec 2021
A More Stable Accelerated Gradient Method Inspired by Continuous-Time Perspective
Yasong Feng
Weiguo Gao
15
0
0
09 Dec 2021
Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent Flows
Param Budhraja
Mayank Baranwal
Kunal Garg
A. Hota
13
9
0
02 Dec 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
22
8
0
11 Nov 2021
On Accelerating Distributed Convex Optimizations
Kushal Chakrabarti
Nirupam Gupta
Nikhil Chopra
16
7
0
19 Aug 2021
On Constraints in First-Order Optimization: A View from Non-Smooth Dynamical Systems
Michael Muehlebach
Michael I. Jordan
26
18
0
17 Jul 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
30
14
0
21 Mar 2021
Revisiting the Role of Euler Numerical Integration on Acceleration and Stability in Convex Optimization
Peiyuan Zhang
Antonio Orvieto
Hadi Daneshmand
Thomas Hofmann
Roy S. Smith
11
9
0
23 Feb 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
29
2
0
04 Jan 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
16
25
0
04 Jan 2021
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
25
11
0
10 Oct 2020
Federated Learning with Nesterov Accelerated Gradient
Zhengjie Yang
Wei Bao
Dong Yuan
Nguyen H. Tran
Albert Y. Zomaya
FedML
19
29
0
18 Sep 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
26
79
0
17 Sep 2020
Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
25
2
0
15 Aug 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi-An Ma
40
23
0
18 Jun 2020
On dissipative symplectic integration with applications to gradient-based optimization
G. Francca
Michael I. Jordan
René Vidal
11
47
0
15 Apr 2020
Stochastic Modified Equations for Continuous Limit of Stochastic ADMM
Xiang Zhou
Huizhuo Yuan
C. J. Li
Qingyun Sun
15
6
0
07 Mar 2020
A Newton Frank-Wolfe Method for Constrained Self-Concordant Minimization
Deyi Liu
V. Cevher
Quoc Tran-Dinh
21
15
0
17 Feb 2020
On the Effectiveness of Richardson Extrapolation in Machine Learning
Francis R. Bach
11
9
0
07 Feb 2020
1
2
Next