Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.01057
Cited By
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
3 March 2015
A. Wilson
H. Nickisch
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)"
26 / 76 papers shown
Title
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
19
26
0
22 Oct 2020
KrigHedge: Gaussian Process Surrogates for Delta Hedging
M. Ludkovski
Yuri F. Saporito
43
5
0
16 Oct 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
19
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
22
112
0
18 Jun 2020
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
16
2
0
14 Jun 2020
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
28
22
0
18 Feb 2020
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
24
27
0
30 Dec 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
27
29
0
28 May 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
8
225
0
19 Mar 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
46
854
0
18 Jan 2019
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
16
9
0
27 Nov 2018
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
14
75
0
29 Oct 2018
Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion
Steven Atkinson
N. Zabaras
14
36
0
11 Jul 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
23
83
0
03 Jun 2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
25
94
0
16 Mar 2018
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
20
61
0
19 Oct 2017
Gaussian process regression for forecasting battery state of health
R. Richardson
Michael A. Osborne
David A. Howey
9
519
0
16 Mar 2017
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric P. Xing
BDL
13
104
0
27 Oct 2016
Warm Starting Bayesian Optimization
Matthias Poloczek
Jialei Wang
P. Frazier
15
61
0
11 Aug 2016
Preconditioning Kernel Matrices
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
26
72
0
22 Feb 2016
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
BDL
47
872
0
06 Nov 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
11
21
0
27 Oct 2015
A Practical Guide to Randomized Matrix Computations with MATLAB Implementations
Shusen Wang
27
37
0
28 May 2015
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
Previous
1
2