ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.01057
  4. Cited By
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)

Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

3 March 2015
A. Wilson
H. Nickisch
    GP
ArXivPDFHTML

Papers citing "Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)"

26 / 76 papers shown
Title
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
19
26
0
22 Oct 2020
KrigHedge: Gaussian Process Surrogates for Delta Hedging
KrigHedge: Gaussian Process Surrogates for Delta Hedging
M. Ludkovski
Yuri F. Saporito
43
5
0
16 Oct 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
19
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
22
112
0
18 Jun 2020
The Statistical Cost of Robust Kernel Hyperparameter Tuning
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
16
2
0
14 Jun 2020
Deep Gaussian Markov Random Fields
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
28
22
0
18 Feb 2020
Randomly Projected Additive Gaussian Processes for Regression
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
24
27
0
30 Dec 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
27
29
0
28 May 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
8
225
0
19 Mar 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
46
854
0
18 Jan 2019
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
16
9
0
27 Nov 2018
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
14
75
0
29 Oct 2018
Structured Bayesian Gaussian process latent variable model: applications
  to data-driven dimensionality reduction and high-dimensional inversion
Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion
Steven Atkinson
N. Zabaras
14
36
0
11 Jul 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian
  Process Regression
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
23
83
0
03 Jun 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
25
94
0
16 Mar 2018
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor
  Train Decomposition
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
20
61
0
19 Oct 2017
Gaussian process regression for forecasting battery state of health
Gaussian process regression for forecasting battery state of health
R. Richardson
Michael A. Osborne
David A. Howey
9
519
0
16 Mar 2017
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric P. Xing
BDL
13
104
0
27 Oct 2016
Warm Starting Bayesian Optimization
Warm Starting Bayesian Optimization
Matthias Poloczek
Jialei Wang
P. Frazier
15
61
0
11 Aug 2016
Preconditioning Kernel Matrices
Preconditioning Kernel Matrices
Kurt Cutajar
Michael A. Osborne
John P. Cunningham
Maurizio Filippone
26
72
0
22 Feb 2016
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
BDL
47
872
0
06 Nov 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
11
21
0
27 Oct 2015
A Practical Guide to Randomized Matrix Computations with MATLAB
  Implementations
A Practical Guide to Randomized Matrix Computations with MATLAB Implementations
Shusen Wang
27
37
0
28 May 2015
A Framework for Evaluating Approximation Methods for Gaussian Process
  Regression
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
Previous
12