ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.01057
  4. Cited By
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)

Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

3 March 2015
A. Wilson
H. Nickisch
    GP
ArXivPDFHTML

Papers citing "Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)"

50 / 75 papers shown
Title
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
172
0
0
08 Apr 2025
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Theresa Wagner
Tianshi Xu
Franziska Nestler
Yuanzhe Xi
Martin Stoll
51
1
0
01 Apr 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
132
0
0
31 Dec 2024
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
33
0
0
07 Nov 2024
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDL
GP
45
1
0
28 Oct 2024
Scaling Gaussian Processes for Learning Curve Prediction via Latent
  Kronecker Structure
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
29
2
0
11 Oct 2024
Gridded Transformer Neural Processes for Large Unstructured
  Spatio-Temporal Data
Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data
Matthew Ashman
Cristiana-Diana Diaconu
Eric Langezaal
Adrian Weller
Richard E. Turner
AI4TS
36
1
0
09 Oct 2024
Review of Recent Advances in Gaussian Process Regression Methods
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
29
3
0
12 Sep 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and
  Sequential Monte Carlo
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
37
0
0
07 Jun 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
40
0
0
27 May 2024
Large-scale magnetic field maps using structured kernel interpolation
  for Gaussian process regression
Large-scale magnetic field maps using structured kernel interpolation for Gaussian process regression
Clara Menzen
Marnix Fetter
Manon Kok
22
1
0
25 Oct 2023
Quantized Fourier and Polynomial Features for more Expressive Tensor
  Network Models
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
19
1
0
11 Sep 2023
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Shams Forruque Ahmed
Md. Sakib Bin Alam
Maliha Kabir
Shaila Afrin
Sabiha Jannat Rafa
Aanushka Mehjabin
Amir H. Gandomi
AI4CE
42
2
0
06 Sep 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive
  Level-Set Estimation
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas A. Desautels
Yuxin Chen
30
6
0
25 Jul 2023
Privacy-aware Gaussian Process Regression
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
8
1
0
25 May 2023
Kernel Interpolation with Sparse Grids
Kernel Interpolation with Sparse Grids
Mohit Yadav
Daniel Sheldon
Cameron Musco
15
4
0
23 May 2023
Uniform approximation of common Gaussian process kernels using
  equispaced Fourier grids
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
23
7
0
18 May 2023
SKI to go Faster: Accelerating Toeplitz Neural Networks via Asymmetric
  Kernels
SKI to go Faster: Accelerating Toeplitz Neural Networks via Asymmetric Kernels
Alexander Moreno
Jonathan Mei
Luke Walters
21
0
0
15 May 2023
Learning Switching Port-Hamiltonian Systems with Uncertainty
  Quantification
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
31
2
0
15 May 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with
  Physics Prior
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
29
17
0
15 May 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
29
5
0
11 Apr 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Deep Kernel Learning for Mortality Prediction in the Face of Temporal
  Shift
Deep Kernel Learning for Mortality Prediction in the Face of Temporal Shift
Miguel Rios
A. Abu-Hanna
OOD
22
1
0
01 Dec 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
25
1
0
20 Nov 2022
Spatially scalable recursive estimation of Gaussian process terrain maps
  using local basis functions
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Viset
R. Helmons
Manon Kok
34
1
0
17 Oct 2022
Optimal Sensor Placement in Body Surface Networks using Gaussian
  Processes
Optimal Sensor Placement in Body Surface Networks using Gaussian Processes
Emad Alenany
Changqing Cheng
11
0
0
07 Sep 2022
Bayesian Complementary Kernelized Learning for Multidimensional
  Spatiotemporal Data
Bayesian Complementary Kernelized Learning for Multidimensional Spatiotemporal Data
Mengying Lei
A. Labbe
Lijun Sun
20
1
0
21 Aug 2022
Integrating Random Effects in Deep Neural Networks
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDL
AI4CE
35
21
0
07 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed
  Torque Control
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
11
3
0
10 May 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
33
3
0
22 Feb 2022
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
J. Ryan
Anil Damle
16
0
0
08 Feb 2022
Giga-scale Kernel Matrix Vector Multiplication on GPU
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
29
2
0
02 Feb 2022
GPEX, A Framework For Interpreting Artificial Neural Networks
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
44
4
0
18 Dec 2021
A Bayesian take on option pricing with Gaussian processes
A Bayesian take on option pricing with Gaussian processes
Martin Tegnér
Stephen J. Roberts
GP
6
2
0
07 Dec 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
20
3
0
19 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
19
31
0
02 Nov 2021
GPGM-SLAM: a Robust SLAM System for Unstructured Planetary Environments
  with Gaussian Process Gradient Maps
GPGM-SLAM: a Robust SLAM System for Unstructured Planetary Environments with Gaussian Process Gradient Maps
Riccardo Giubilato
Cedric Le Gentil
Mallikarjuna Vayugundla
M. J. Schuster
Teresa Vidal-Calleja
Rudolph Triebel
21
9
0
14 Sep 2021
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
14
18
0
08 Jul 2021
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
22
24
0
01 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
38
25
0
26 Jun 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
21
8
0
18 Jun 2021
Local approximate Gaussian process regression for data-driven
  constitutive laws: Development and comparison with neural networks
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks
J. Fuhg
M. Marino
N. Bouklas
31
59
0
07 May 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian
  Processes: A Comprehensive Survey
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
33
30
0
18 Mar 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain
  Observations
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
17
8
0
28 Feb 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Opponent Learning Awareness and Modelling in Multi-Objective Normal Form
  Games
Opponent Learning Awareness and Modelling in Multi-Objective Normal Form Games
Roxana Rădulescu
T. Verstraeten
Yijie Zhang
Patrick Mannion
D. Roijers
A. Nowé
25
14
0
14 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for
  Long-term Forecasting
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for Long-term Forecasting
Kai Chen
Twan van Laarhoven
E. Marchiori
AI4TS
39
8
0
08 Nov 2020
12
Next