Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.01057
Cited By
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
3 March 2015
A. Wilson
H. Nickisch
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)"
50 / 75 papers shown
Title
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
172
0
0
08 Apr 2025
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Theresa Wagner
Tianshi Xu
Franziska Nestler
Yuanzhe Xi
Martin Stoll
51
1
0
01 Apr 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
132
0
0
31 Dec 2024
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
33
0
0
07 Nov 2024
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDL
GP
45
1
0
28 Oct 2024
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
29
2
0
11 Oct 2024
Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data
Matthew Ashman
Cristiana-Diana Diaconu
Eric Langezaal
Adrian Weller
Richard E. Turner
AI4TS
36
1
0
09 Oct 2024
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
29
3
0
12 Sep 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
37
0
0
07 Jun 2024
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
40
0
0
27 May 2024
Large-scale magnetic field maps using structured kernel interpolation for Gaussian process regression
Clara Menzen
Marnix Fetter
Manon Kok
22
1
0
25 Oct 2023
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
19
1
0
11 Sep 2023
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Shams Forruque Ahmed
Md. Sakib Bin Alam
Maliha Kabir
Shaila Afrin
Sabiha Jannat Rafa
Aanushka Mehjabin
Amir H. Gandomi
AI4CE
42
2
0
06 Sep 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas A. Desautels
Yuxin Chen
30
6
0
25 Jul 2023
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
8
1
0
25 May 2023
Kernel Interpolation with Sparse Grids
Mohit Yadav
Daniel Sheldon
Cameron Musco
15
4
0
23 May 2023
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
23
7
0
18 May 2023
SKI to go Faster: Accelerating Toeplitz Neural Networks via Asymmetric Kernels
Alexander Moreno
Jonathan Mei
Luke Walters
21
0
0
15 May 2023
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
31
2
0
15 May 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
29
17
0
15 May 2023
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
29
5
0
11 Apr 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Deep Kernel Learning for Mortality Prediction in the Face of Temporal Shift
Miguel Rios
A. Abu-Hanna
OOD
22
1
0
01 Dec 2022
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
25
1
0
20 Nov 2022
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Viset
R. Helmons
Manon Kok
34
1
0
17 Oct 2022
Optimal Sensor Placement in Body Surface Networks using Gaussian Processes
Emad Alenany
Changqing Cheng
11
0
0
07 Sep 2022
Bayesian Complementary Kernelized Learning for Multidimensional Spatiotemporal Data
Mengying Lei
A. Labbe
Lijun Sun
20
1
0
21 Aug 2022
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDL
AI4CE
35
21
0
07 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
11
3
0
10 May 2022
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
33
3
0
22 Feb 2022
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
J. Ryan
Anil Damle
16
0
0
08 Feb 2022
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
29
2
0
02 Feb 2022
GPEX, A Framework For Interpreting Artificial Neural Networks
Amir Akbarnejad
G. Bigras
Nilanjan Ray
44
4
0
18 Dec 2021
A Bayesian take on option pricing with Gaussian processes
Martin Tegnér
Stephen J. Roberts
GP
6
2
0
07 Dec 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
20
3
0
19 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
19
31
0
02 Nov 2021
GPGM-SLAM: a Robust SLAM System for Unstructured Planetary Environments with Gaussian Process Gradient Maps
Riccardo Giubilato
Cedric Le Gentil
Mallikarjuna Vayugundla
M. J. Schuster
Teresa Vidal-Calleja
Rudolph Triebel
21
9
0
14 Sep 2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
14
18
0
08 Jul 2021
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
22
24
0
01 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
38
25
0
26 Jun 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
21
8
0
18 Jun 2021
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks
J. Fuhg
M. Marino
N. Bouklas
31
59
0
07 May 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
33
30
0
18 Mar 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
17
8
0
28 Feb 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Opponent Learning Awareness and Modelling in Multi-Objective Normal Form Games
Roxana Rădulescu
T. Verstraeten
Yijie Zhang
Patrick Mannion
D. Roijers
A. Nowé
25
14
0
14 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for Long-term Forecasting
Kai Chen
Twan van Laarhoven
E. Marchiori
AI4TS
39
8
0
08 Nov 2020
1
2
Next