Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.07645
Cited By
Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo
26 February 2015
Yu-Xiang Wang
S. Fienberg
Alex Smola
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Privacy for Free: Posterior Sampling and Stochastic Gradient Monte Carlo"
45 / 45 papers shown
Title
Distributed Differentially Private Data Analytics via Secure Sketching
Jakob Burkhardt
Hannah Keller
Claudio Orlandi
Chris Schwiegelshohn
FedML
82
0
0
30 Nov 2024
Noise-Aware Differentially Private Variational Inference
Talal Alrawajfeh
Joonas Jälkö
Antti Honkela
32
0
0
25 Oct 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
29
5
0
28 May 2024
The Expected Loss of Preconditioned Langevin Dynamics Reveals the Hessian Rank
Amitay Bar
Rotem Mulayoff
T. Michaeli
Ronen Talmon
56
0
0
21 Feb 2024
An In-Depth Examination of Requirements for Disclosure Risk Assessment
Ron S. Jarmin
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
N. Goldschlag
...
Jerome P. Reiter
Rolando A. Rodríguez
Ian M. Schmutte
V. Velkoff
Pavel I Zhuravlev
24
9
0
13 Oct 2023
DPpack: An R Package for Differentially Private Statistical Analysis and Machine Learning
S. Giddens
F. Liu
25
1
0
19 Sep 2023
Differential Privacy for Class-based Data: A Practical Gaussian Mechanism
Raksha Ramakrishna
Anna Scaglione
Tong Wu
Nikhil Ravi
S. Peisert
22
4
0
08 Jun 2023
Differentially Private Distributed Bayesian Linear Regression with MCMC
Barics Alparslan
S. Yıldırım
cS. .Ilker Birbil
FedML
23
1
0
31 Jan 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
35
9
0
30 Jan 2023
Forget Unlearning: Towards True Data-Deletion in Machine Learning
R. Chourasia
Neil Shah
MU
13
39
0
17 Oct 2022
An Ensemble Teacher-Student Learning Approach with Poisson Sub-sampling to Differential Privacy Preserving Speech Recognition
Chao-Han Huck Yang
Jun Qi
Sabato Marco Siniscalchi
Chin-Hui Lee
16
4
0
12 Oct 2022
Self-Supervised Pretraining for Differentially Private Learning
Arash Asadian
Evan Weidner
Lei Jiang
PICV
25
3
0
14 Jun 2022
Exact Privacy Guarantees for Markov Chain Implementations of the Exponential Mechanism with Artificial Atoms
Jeremy Seeman
M. Reimherr
Aleksandra B. Slavkovic
19
11
0
03 Apr 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
18
8
0
09 Jan 2022
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi-An Ma
Zhao-quan Song
Guang Lin
FedML
22
16
0
09 Dec 2021
Differentially private stochastic expectation propagation (DP-SEP)
Margarita Vinaroz
Mijung Park
17
1
0
25 Nov 2021
Dirichlet Mechanism for Differentially Private KL Divergence Minimization
Donlapark Ponnoprat
10
0
0
03 Oct 2021
Perturbed M-Estimation: A Further Investigation of Robust Statistics for Differential Privacy
Aleksandra B. Slavkovic
Roberto Molinari
17
5
0
05 Aug 2021
Privacy-Aware Rejection Sampling
Jordan Awan
Vinayak A. Rao
24
7
0
02 Aug 2021
Differentially Private Hamiltonian Monte Carlo
Ossi Raisa
A. Koskela
Antti Honkela
11
6
0
17 Jun 2021
Optimal Accounting of Differential Privacy via Characteristic Function
Yuqing Zhu
Jinshuo Dong
Yu-Xiang Wang
15
98
0
16 Jun 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
25
29
0
19 Mar 2021
Differentially Private Bayesian Inference for Generalized Linear Models
Tejas D. Kulkarni
Joonas Jälkö
A. Koskela
Samuel Kaski
Antti Honkela
18
31
0
01 Nov 2020
Reviewing and Improving the Gaussian Mechanism for Differential Privacy
Jun Zhao
Teng Wang
Tao Bai
Kwok-Yan Lam
Zhiying Xu
Shuyu Shi
Xuebin Ren
Xinyu Yang
Yang Liu
Han Yu
22
30
0
27 Nov 2019
Differentially Private Bayesian Linear Regression
G. Bernstein
Daniel Sheldon
27
58
0
29 Oct 2019
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection
Bingzhe Wu
Shiwan Zhao
Chaochao Chen
Haoyang Xu
Li Wang
Xiaolu Zhang
Guangyu Sun
Jun Zhou
14
45
0
21 Aug 2019
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
16
135
0
16 Jul 2019
On Privacy Protection of Latent Dirichlet Allocation Model Training
Fangyuan Zhao
Xuebin Ren
Shusen Yang
Xinyu Yang
20
5
0
04 Jun 2019
KNG: The K-Norm Gradient Mechanism
M. Reimherr
Jordan Awan
21
23
0
23 May 2019
Differentially Private Markov Chain Monte Carlo
Mikko A. Heikkilä
Joonas Jälkö
O. Dikmen
Antti Honkela
16
25
0
29 Jan 2019
Profile-Based Privacy for Locally Private Computations
J. Geumlek
Kamalika Chaudhuri
14
17
0
21 Jan 2019
Concentrated Differentially Private Gradient Descent with Adaptive per-Iteration Privacy Budget
Jaewoo Lee
Daniel Kifer
14
156
0
28 Aug 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
20
144
0
26 Dec 2017
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
27
38
0
25 Dec 2017
Per-instance Differential Privacy
Yu-Xiang Wang
29
5
0
24 Jul 2017
Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
Umut Simsekli
30
45
0
12 Jun 2017
Collect at Once, Use Effectively: Making Non-interactive Locally Private Learning Possible
Kai Zheng
Wenlong Mou
Liwei Wang
34
41
0
11 Jun 2017
Differentially Private Variational Inference for Non-conjugate Models
Joonas Jälkö
O. Dikmen
Antti Honkela
FedML
13
48
0
27 Oct 2016
On the Theory and Practice of Privacy-Preserving Bayesian Data Analysis
James R. Foulds
J. Geumlek
Max Welling
Kamalika Chaudhuri
18
102
0
23 Mar 2016
Pufferfish Privacy Mechanisms for Correlated Data
Shuang Song
Yizhen Wang
Kamalika Chaudhuri
17
148
0
13 Mar 2016
Stochastic Quasi-Newton Langevin Monte Carlo
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
14
59
0
10 Feb 2016
Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA
Yannis Papanikolaou
James R. Foulds
T. Rubin
Grigorios Tsoumakas
23
34
0
08 May 2015
Fast Differentially Private Matrix Factorization
Ziqi Liu
Yu-Xiang Wang
Alex Smola
FedML
40
124
0
06 May 2015
Learning with Differential Privacy: Stability, Learnability and the Sufficiency and Necessity of ERM Principle
Yu-Xiang Wang
Jing Lei
S. Fienberg
28
103
0
23 Feb 2015
1