Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.05477
Cited By
Trust Region Policy Optimization
19 February 2015
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Trust Region Policy Optimization"
50 / 3,098 papers shown
Title
Safe Policy Improvement with Soft Baseline Bootstrapping
Kimia Nadjahi
Romain Laroche
Rémi Tachet des Combes
OffRL
17
36
0
11 Jul 2019
A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning
Nicholas C. Landolfi
G. Thomas
Tengyu Ma
OffRL
13
19
0
11 Jul 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
45
18
0
10 Jul 2019
An Optimistic Perspective on Offline Reinforcement Learning
Rishabh Agarwal
Dale Schuurmans
Mohammad Norouzi
OffRL
OnRL
38
69
0
10 Jul 2019
Simple Kinematic Feedback Enhances Autonomous Learning in Bio-Inspired Tendon-Driven Systems
Ali Marjaninejad
Darío Urbina-Meléndez
Francisco J. Valero Cuevas
15
5
0
10 Jul 2019
DOB-Net: Actively Rejecting Unknown Excessive Time-Varying Disturbances
Tianming Wang
Wenjie Lu
Zheng Yan
Dikai Liu
51
4
0
10 Jul 2019
Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems
M. Lutter
Kim D. Listmann
Jan Peters
PINN
24
71
0
10 Jul 2019
On-Policy Robot Imitation Learning from a Converging Supervisor
Ashwin Balakrishna
Brijen Thananjeyan
Jonathan Lee
Felix Li
Arsh Zahed
Joseph E. Gonzalez
Ken Goldberg
30
17
0
08 Jul 2019
Deep Learning based Wireless Resource Allocation with Application to Vehicular Networks
Le Liang
Hao Ye
Guanding Yu
Geoffrey Ye Li
30
195
0
07 Jul 2019
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
George Konidaris
41
356
0
06 Jul 2019
Entropic Regularization of Markov Decision Processes
Boris Belousov
Jan Peters
25
23
0
06 Jul 2019
Intrinsic Motivation Driven Intuitive Physics Learning using Deep Reinforcement Learning with Intrinsic Reward Normalization
Jae-Woo Choi
Sung-eui Yoon
AI4CE
PINN
33
3
0
06 Jul 2019
Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets
Xiaofeng Liu
B. Kumar
Chao Yang
Qingming Tang
J. You
CVBM
23
42
0
05 Jul 2019
Self-supervised Learning of Distance Functions for Goal-Conditioned Reinforcement Learning
Srinivas Venkattaramanujam
Eric Crawford
T. Doan
Doina Precup
OffRL
SSL
21
24
0
05 Jul 2019
Integration of Imitation Learning using GAIL and Reinforcement Learning using Task-achievement Rewards via Probabilistic Graphical Model
Akira Kinose
T. Taniguchi
35
20
0
03 Jul 2019
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
34
359
0
03 Jul 2019
Co-training for Policy Learning
Jialin Song
Ravi Lanka
Yisong Yue
M. Ono
OffRL
18
19
0
03 Jul 2019
Dynamics-Aware Unsupervised Discovery of Skills
Archit Sharma
S. Gu
Sergey Levine
Vikash Kumar
Karol Hausman
42
399
0
02 Jul 2019
Modified Actor-Critics
Erinc Merdivan
S. Hanke
M. Geist
24
2
0
02 Jul 2019
FiDi-RL: Incorporating Deep Reinforcement Learning with Finite-Difference Policy Search for Efficient Learning of Continuous Control
Longxiang Shi
Shijian Li
LongBing Cao
Long Yang
Gang Zheng
Gang Pan
24
5
0
01 Jul 2019
Way Off-Policy Batch Deep Reinforcement Learning of Implicit Human Preferences in Dialog
Natasha Jaques
Asma Ghandeharioun
J. Shen
Craig Ferguson
Àgata Lapedriza
Noah J. Jones
S. Gu
Rosalind W. Picard
OffRL
45
337
0
30 Jun 2019
Learning Policies through Quantile Regression
Oliver Richter
Roger Wattenhofer
18
0
0
27 Jun 2019
Demonstration-Guided Deep Reinforcement Learning of Control Policies for Dexterous Human-Robot Interaction
Sammy Christen
Stefan Stevšić
Otmar Hilliges
35
24
0
27 Jun 2019
Deep Active Learning with Adaptive Acquisition
Manuel Haussmann
Fred Hamprecht
M. Kandemir
22
41
0
27 Jun 2019
From self-tuning regulators to reinforcement learning and back again
Nikolai Matni
Alexandre Proutiere
Anders Rantzer
Stephen Tu
27
88
0
27 Jun 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
30
27
0
26 Jun 2019
Policy Optimization with Stochastic Mirror Descent
Long Yang
Yu Zhang
Gang Zheng
Qian Zheng
Pengfei Li
Jianhang Huang
Jun Wen
Gang Pan
44
34
0
25 Jun 2019
Optimistic Proximal Policy Optimization
Takahisa Imagawa
Takuya Hiraoka
Yoshimasa Tsuruoka
15
4
0
25 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
30
108
0
25 Jun 2019
Modern Deep Reinforcement Learning Algorithms
Sergey Ivanov
A. Dýakonov
OffRL
29
39
0
24 Jun 2019
Deep Conservative Policy Iteration
Nino Vieillard
Olivier Pietquin
M. Geist
14
26
0
24 Jun 2019
Learning Belief Representations for Imitation Learning in POMDPs
Tanmay Gangwani
Joel Lehman
Qiang Liu
Jian Peng
29
36
0
22 Jun 2019
Reinforcement Learning with Convex Constraints
Sobhan Miryoosefi
Kianté Brantley
Hal Daumé
Miroslav Dudík
Robert Schapire
25
90
0
21 Jun 2019
Continual Reinforcement Learning with Diversity Exploration and Adversarial Self-Correction
Fengda Zhu
Xiaojun Chang
Runhao Zeng
Mingkui Tan
CLL
18
3
0
21 Jun 2019
Variable Impedance Control in End-Effector Space: An Action Space for Reinforcement Learning in Contact-Rich Tasks
Roberto Martín-Martín
Michelle A. Lee
Rachel Gardner
Silvio Savarese
Jeannette Bohg
Animesh Garg
33
194
0
20 Jun 2019
Exploring Model-based Planning with Policy Networks
Tingwu Wang
Jimmy Ba
42
147
0
20 Jun 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Kai Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
49
186
0
19 Jun 2019
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
39
935
0
19 Jun 2019
Reward Prediction Error as an Exploration Objective in Deep RL
Riley Simmons-Edler
Ben Eisner
Daniel Yang
Anthony Bisulco
E. Mitchell
Sebastian Seung
Daniel D. Lee
31
5
0
19 Jun 2019
Wasserstein Adversarial Imitation Learning
Huang Xiao
Michael Herman
Joerg Wagner
Sebastian Ziesche
Jalal Etesami
T. H. Linh
4
67
0
19 Jun 2019
Gap-Increasing Policy Evaluation for Efficient and Noise-Tolerant Reinforcement Learning
Tadashi Kozuno
Dongqi Han
Kenji Doya
OffRL
28
2
0
18 Jun 2019
Sample-efficient Adversarial Imitation Learning from Observation
F. Torabi
S. Geiger
Garrett A. Warnell
Peter Stone
29
13
0
18 Jun 2019
RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration
Brahma S. Pavse
F. Torabi
Josiah P. Hanna
Garrett A. Warnell
Peter Stone
27
33
0
18 Jun 2019
NeoNav: Improving the Generalization of Visual Navigation via Generating Next Expected Observations
Qiaoyun Wu
Tianyi Zhou
Jun Wang
Kai Xu
16
15
0
17 Jun 2019
Is the Policy Gradient a Gradient?
Chris Nota
Philip S. Thomas
8
57
0
17 Jun 2019
Learning-Driven Exploration for Reinforcement Learning
Muhammad Usama
D. Chang
35
10
0
17 Jun 2019
LPaintB: Learning to Paint from Self-Supervision
Biao Jia
Jonathan Brandt
R. Měch
Byungmoon Kim
Tianyi Zhou
SSL
19
12
0
17 Jun 2019
Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces
Guy Lorberbom
Chris J. Maddison
N. Heess
Tamir Hazan
Daniel Tarlow
34
8
0
14 Jun 2019
Goal-conditioned Imitation Learning
Yiming Ding
Carlos Florensa
Mariano Phielipp
Pieter Abbeel
34
219
0
13 Jun 2019
Sub-policy Adaptation for Hierarchical Reinforcement Learning
Alexander C. Li
Carlos Florensa
I. Clavera
Pieter Abbeel
29
72
0
13 Jun 2019
Previous
1
2
3
...
47
48
49
...
60
61
62
Next