Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.05336
Cited By
v1
v2 (latest)
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
18 February 2015
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks"
18 / 18 papers shown
Title
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Xueqiong Yuan
Jipeng Li
E. Kuruoglu
UQCV
BDL
130
0
0
21 Jan 2025
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
David Perera
Victor Letzelter
Théo Mariotte
Adrien Cortés
Mickaël Chen
S. Essid
Ga¨el Richard
156
4
0
20 Jan 2025
Training-Free Bayesianization for Low-Rank Adapters of Large Language Models
Haizhou Shi
Yibin Wang
Ligong Han
Huatian Zhang
Hao Wang
UQCV
199
2
0
07 Dec 2024
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
265
1
0
25 Nov 2024
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
90
1
0
30 Oct 2024
Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown
Xingzhou Lou
Dong Yan
Wei Shen
Yuzi Yan
Jian Xie
Junge Zhang
189
28
0
01 Oct 2024
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
74
3
0
29 Aug 2024
Enabling Uncertainty Estimation in Iterative Neural Networks
Nikita Durasov
Doruk Öner
Jonathan Donier
Hieu M. Le
Pascal Fua
UQCV
177
9
0
25 Mar 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
171
28
0
07 Feb 2024
Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction
Qinghui Liu
E. Fuster-García
I. T. Hovden
Donatas Sederevičius
Karoline Skogen
...
Till Schellhorn
P. Brandal
A. Bjørnerud
K. Emblem
Kyrre Eeg Emblem
89
3
0
11 Sep 2023
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Yue Liu
P. Varshney
Basel Alomair
AAML
139
47
0
16 Mar 2020
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
113
44
0
23 Oct 2019
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
152
70
0
31 Dec 2015
Deep Image: Scaling up Image Recognition
Ren Wu
Shengen Yan
Yi Shan
Qingqing Dang
Gang Sun
VLM
70
374
0
13 Jan 2015
Deep Speech: Scaling up end-to-end speech recognition
Awni Y. Hannun
Carl Case
Jared Casper
Bryan Catanzaro
G. Diamos
...
R. Prenger
S. Satheesh
Shubho Sengupta
Adam Coates
A. Ng
186
2,128
0
17 Dec 2014
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
443
20,584
0
10 Sep 2014
Expectation Propagation for Neural Networks with Sparsity-promoting Priors
Pasi Jylänki
A. Nummenmaa
Aki Vehtari
69
36
0
27 Mar 2013
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
369
7,957
0
13 Jun 2012
1