Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.02846
Cited By
Probabilistic Line Searches for Stochastic Optimization
10 February 2015
Maren Mahsereci
Philipp Hennig
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Probabilistic Line Searches for Stochastic Optimization"
19 / 19 papers shown
Title
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
39
0
0
30 Apr 2025
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic Line Search
Max McGuinness
ODL
20
0
0
06 Aug 2023
Local Bayesian optimization via maximizing probability of descent
Quan Nguyen
Kaiwen Wu
Jacob R. Gardner
Roman Garnett
17
23
0
21 Oct 2022
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
53
2
0
07 Jul 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
44
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
33
0
0
02 Oct 2020
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
11
29
0
18 Jan 2020
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
27
11
0
15 Sep 2019
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
16
21
0
03 Sep 2019
LOSSGRAD: automatic learning rate in gradient descent
B. Wójcik
Lukasz Maziarka
Jacek Tabor
ODL
34
4
0
20 Feb 2019
The Incremental Proximal Method: A Probabilistic Perspective
Ömer Deniz Akyildiz
Victor Elvira
Joaquín Míguez
9
7
0
12 Jul 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
20
85
0
24 Mar 2018
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
19
164
0
13 Feb 2017
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
21
110
0
15 Dec 2016
An empirical analysis of the optimization of deep network loss surfaces
Daniel Jiwoong Im
Michael Tao
K. Branson
ODL
27
61
0
13 Dec 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
16
62
0
18 Oct 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
16
25
0
23 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
40
182
0
13 May 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
27
708
0
02 Mar 2016
1