ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.02846
  4. Cited By
Probabilistic Line Searches for Stochastic Optimization

Probabilistic Line Searches for Stochastic Optimization

10 February 2015
Maren Mahsereci
Philipp Hennig
    ODL
ArXivPDFHTML

Papers citing "Probabilistic Line Searches for Stochastic Optimization"

19 / 19 papers shown
Title
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
39
0
0
30 Apr 2025
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic
  Line Search
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic Line Search
Max McGuinness
ODL
20
0
0
06 Aug 2023
Local Bayesian optimization via maximizing probability of descent
Local Bayesian optimization via maximizing probability of descent
Quan Nguyen
Kaiwen Wu
Jacob R. Gardner
Roman Garnett
17
23
0
21 Oct 2022
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
53
2
0
07 Jul 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
  Filtering
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
44
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss
  for stochastic deep learning problems
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
33
0
0
02 Oct 2020
Adaptive Stochastic Optimization
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
11
29
0
18 Jan 2020
Empirical study towards understanding line search approximations for
  training neural networks
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
27
11
0
15 Sep 2019
Stochastic quasi-Newton with line-search regularization
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
16
21
0
03 Sep 2019
LOSSGRAD: automatic learning rate in gradient descent
LOSSGRAD: automatic learning rate in gradient descent
B. Wójcik
Lukasz Maziarka
Jacek Tabor
ODL
34
4
0
20 Feb 2019
The Incremental Proximal Method: A Probabilistic Perspective
The Incremental Proximal Method: A Probabilistic Perspective
Ömer Deniz Akyildiz
Victor Elvira
Joaquín Míguez
9
7
0
12 Jul 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
20
85
0
24 Mar 2018
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
19
164
0
13 Feb 2017
Coupling Adaptive Batch Sizes with Learning Rates
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
21
110
0
15 Dec 2016
An empirical analysis of the optimization of deep network loss surfaces
An empirical analysis of the optimization of deep network loss surfaces
Daniel Jiwoong Im
Michael Tao
K. Branson
ODL
27
61
0
13 Dec 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
16
62
0
18 Oct 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
16
25
0
23 May 2016
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Barzilai-Borwein Step Size for Stochastic Gradient Descent
Conghui Tan
Shiqian Ma
Yuhong Dai
Yuqiu Qian
40
182
0
13 May 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
27
708
0
02 Mar 2016
1