ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.03796
  4. Cited By
The Fast Convergence of Incremental PCA

The Fast Convergence of Incremental PCA

15 January 2015
Akshay Balsubramani
S. Dasgupta
Y. Freund
ArXivPDFHTML

Papers citing "The Fast Convergence of Incremental PCA"

22 / 22 papers shown
Title
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Global Convergence of Adaptive Sensing for Principal Eigenvector Estimation
Alex Saad-Falcon
Brighton Ancelin
Justin Romberg
22
0
0
16 May 2025
Fast Detection of Burst Jamming for Delay-Sensitive Internet-of-Things
  Applications
Fast Detection of Burst Jamming for Delay-Sensitive Internet-of-Things Applications
Shao-Di Wang
Hui-Ming Wang
Peng Liu
13
1
0
02 Dec 2022
AgFlow: Fast Model Selection of Penalized PCA via Implicit
  Regularization Effects of Gradient Flow
AgFlow: Fast Model Selection of Penalized PCA via Implicit Regularization Effects of Gradient Flow
Haiyan Jiang
Haoyi Xiong
Dongrui Wu
Ji Liu
Dejing Dou
18
1
0
07 Oct 2021
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component
  Analysis
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis
Arpita Gang
W. Bajwa
60
17
0
27 Aug 2021
Batch Stationary Distribution Estimation
Batch Stationary Distribution Estimation
Junfeng Wen
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
22
22
0
02 Mar 2020
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality
  Constraint
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
Ehsan Amid
Manfred K. Warmuth
23
11
0
11 Sep 2019
Diffusion Approximations for Online Principal Component Estimation and
  Global Convergence
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
34
12
0
29 Aug 2018
Streaming PCA and Subspace Tracking: The Missing Data Case
Streaming PCA and Subspace Tracking: The Missing Data Case
Laura Balzano
Yuejie Chi
Yue M. Lu
13
84
0
12 Jun 2018
History PCA: A New Algorithm for Streaming PCA
History PCA: A New Algorithm for Streaming PCA
Puyudi Yang
Cho-Jui Hsieh
Jane-ling Wang
AI4TS
23
23
0
15 Feb 2018
Accelerated Stochastic Power Iteration
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
43
89
0
10 Jul 2017
Convergence rate of stochastic k-means
Convergence rate of stochastic k-means
Cheng Tang
C. Monteleoni
29
26
0
16 Oct 2016
Correlated-PCA: Principal Components' Analysis when Data and Noise are
  Correlated
Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated
Namrata Vaswani
Han Guo
28
25
0
15 Aug 2016
Efficient Estimation of Partially Linear Models for Spatial Data over
  Complex Domain
Efficient Estimation of Partially Linear Models for Spatial Data over Complex Domain
Elad Hazan
Chi Jin
Cameron Musco
Praneeth Netrapalli
17
7
0
27 May 2016
An Improved Gap-Dependency Analysis of the Noisy Power Method
An Improved Gap-Dependency Analysis of the Noisy Power Method
Maria-Florina Balcan
S. Du
Yining Wang
Adams Wei Yu
32
72
0
23 Feb 2016
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample
  Guarantees for Oja's Algorithm
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm
Prateek Jain
Chi Jin
Sham Kakade
Praneeth Netrapalli
Aaron Sidford
31
128
0
22 Feb 2016
Large-Scale Approximate Kernel Canonical Correlation Analysis
Large-Scale Approximate Kernel Canonical Correlation Analysis
Weiran Wang
Karen Livescu
35
54
0
15 Nov 2015
Online Principal Component Analysis in High Dimension: Which Algorithm
  to Choose?
Online Principal Component Analysis in High Dimension: Which Algorithm to Choose?
H. Cardot
D. Degras
11
103
0
11 Nov 2015
Robust Shift-and-Invert Preconditioning: Faster and More Sample
  Efficient Algorithms for Eigenvector Computation
Robust Shift-and-Invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation
Chi Jin
Sham Kakade
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
24
42
0
29 Oct 2015
Convergence of Stochastic Gradient Descent for PCA
Convergence of Stochastic Gradient Descent for PCA
Ohad Shamir
25
85
0
30 Sep 2015
Finding Linear Structure in Large Datasets with Scalable Canonical
  Correlation Analysis
Finding Linear Structure in Large Datasets with Scalable Canonical Correlation Analysis
Zhuang Ma
Y. Lu
Dean Phillips Foster
46
83
0
26 Jun 2015
Fundamental Limits of Online and Distributed Algorithms for Statistical
  Learning and Estimation
Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and Estimation
Ohad Shamir
66
108
0
14 Nov 2013
The Noisy Power Method: A Meta Algorithm with Applications
The Noisy Power Method: A Meta Algorithm with Applications
Moritz Hardt
Eric Price
41
203
0
11 Nov 2013
1