ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.2495
33
203

The Noisy Power Method: A Meta Algorithm with Applications

11 November 2013
Moritz Hardt
Eric Price
ArXivPDFHTML
Abstract

We provide a new robust convergence analysis of the well-known power method for computing the dominant singular vectors of a matrix that we call the noisy power method. Our result characterizes the convergence behavior of the algorithm when a significant amount noise is introduced after each matrix-vector multiplication. The noisy power method can be seen as a meta-algorithm that has recently found a number of important applications in a broad range of machine learning problems including alternating minimization for matrix completion, streaming principal component analysis (PCA), and privacy-preserving spectral analysis. Our general analysis subsumes several existing ad-hoc convergence bounds and resolves a number of open problems in multiple applications including streaming PCA and privacy-preserving singular vector computation.

View on arXiv
Comments on this paper