ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.03291
  4. Cited By
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based
  Statistical Models

Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models

14 January 2015
Michael U. Gutmann
J. Corander
ArXivPDFHTML

Papers citing "Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models"

50 / 51 papers shown
Title
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
77
9
0
17 Feb 2025
Bayesian Adaptive Calibration and Optimal Design
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
113
0
0
20 Jan 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
116
2
0
17 Jan 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
74
13
0
03 Jan 2025
Compositional simulation-based inference for time series
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
45
1
0
05 Nov 2024
Full-waveform earthquake source inversion using simulation-based inference
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
40
0
0
30 Oct 2024
Global Optimisation of Black-Box Functions with Generative Models in the
  Wasserstein Space
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
36
0
0
16 Jul 2024
Copula Approximate Bayesian Computation Using Distribution Random
  Forests
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
42
1
0
28 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
  Intractable Likelihoods
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
36
0
0
30 Jan 2024
Optimal simulation-based Bayesian decisions
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
33
1
0
09 Nov 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
37
1
0
06 Sep 2023
Bayesian Synthetic Likelihood
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
39
217
0
09 May 2023
A Bayesian Optimization approach for calibrating large-scale
  activity-based transport models
A Bayesian Optimization approach for calibrating large-scale activity-based transport models
S. Agriesti
Vladimir Kuzmanovski
Jaakko Hollmén
C. Roncoli
Bat-hen Nahmias-Biran
29
5
0
07 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
40
12
0
27 Jan 2023
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
32
63
0
30 Nov 2022
Differentiable User Models
Differentiable User Models
Alex Hamalainen
Mustafa Mert cCelikok
Samuel Kaski
26
1
0
29 Nov 2022
Simulation-based inference of Bayesian hierarchical models while
  checking for model misspecification
Simulation-based inference of Bayesian hierarchical models while checking for model misspecification
F. Leclercq
33
6
0
22 Sep 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel
  Recombination
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
22
20
0
09 Jun 2022
Nonparametric likelihood-free inference with Jensen-Shannon divergence
  for simulator-based models with categorical output
Nonparametric likelihood-free inference with Jensen-Shannon divergence for simulator-based models with categorical output
J. Corander
Ulpu Remes
Ida Holopainen
T. Koski
25
0
0
22 May 2022
Optimality in Noisy Importance Sampling
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
41
5
0
07 Jan 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
41
26
0
20 Dec 2021
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
33
31
0
25 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
28
1
0
02 Nov 2021
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
39
37
0
02 Jul 2021
Gradient-based Bayesian Experimental Design for Implicit Models using
  Mutual Information Lower Bounds
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
33
25
0
10 May 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
34
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
185
0
12 Jan 2021
Neural Approximate Sufficient Statistics for Implicit Models
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
30
79
0
20 Oct 2020
Generalised Bayes Updates with $f$-divergences through Probabilistic
  Classifiers
Generalised Bayes Updates with fff-divergences through Probabilistic Classifiers
Owen Thomas
Henri Pesonen
J. Corander
FedML
29
2
0
08 Jul 2020
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
22
40
0
15 Jun 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
42
17
0
14 Apr 2020
Bayesian Experimental Design for Implicit Models by Mutual Information
  Neural Estimation
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
26
66
0
19 Feb 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
45
117
0
10 Feb 2020
Efficient Bayesian synthetic likelihood with whitening transformations
Efficient Bayesian synthetic likelihood with whitening transformations
Jacob W. Priddle
Scott A. Sisson
David T. Frazier
Christopher C. Drovandi
16
18
0
11 Sep 2019
Likelihood-free approximate Gibbs sampling
Likelihood-free approximate Gibbs sampling
G. S. Rodrigues
David J. Nott
Scott A. Sisson
30
24
0
11 Jun 2019
Robust Optimisation Monte Carlo
Robust Optimisation Monte Carlo
Borislav Ikonomov
Michael U. Gutmann
14
8
0
01 Apr 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
32
20
0
10 Mar 2019
Adaptive Gaussian Copula ABC
Adaptive Gaussian Copula ABC
Yanzhi Chen
Michael U. Gutmann
TPM
18
27
0
27 Feb 2019
Bayesian inference using synthetic likelihood: asymptotics and
  adjustments
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
23
40
0
13 Feb 2019
Prepaid parameter estimation without likelihoods
Prepaid parameter estimation without likelihoods
M. Mestdagh
S. Verdonck
Kristof Meers
Tim Loossens
F. Tuerlinckx
11
16
0
24 Dec 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
37
13
0
23 Feb 2018
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian
  Computation
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
Ritabrata Dutta
Marcel Schoengens
Lorenzo Pacchiardi
Avinash Ummadisingu
Nicole Widmer
Pierre Künzli
J. Onnela
Antonietta Mira
29
25
0
13 Nov 2017
Inverse Reinforcement Learning from Summary Data
Inverse Reinforcement Learning from Summary Data
A. Kangasrääsiö
Samuel Kaski
OffRL
26
15
0
28 Mar 2017
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
42
145
0
30 Nov 2016
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
25
412
0
11 Oct 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
32
158
0
20 May 2016
Optimization Monte Carlo: Efficient and Embarrassingly Parallel
  Likelihood-Free Inference
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference
Edward Meeds
Max Welling
27
36
0
11 Jun 2015
12
Next