Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.03291
Cited By
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
14 January 2015
Michael U. Gutmann
J. Corander
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models"
50 / 51 papers shown
Title
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
77
9
0
17 Feb 2025
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
113
0
0
20 Jan 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
116
2
0
17 Jan 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
74
13
0
03 Jan 2025
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
45
1
0
05 Nov 2024
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
40
0
0
30 Oct 2024
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
36
0
0
16 Jul 2024
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
42
1
0
28 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
36
0
0
30 Jan 2024
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
33
1
0
09 Nov 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
37
1
0
06 Sep 2023
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
39
217
0
09 May 2023
A Bayesian Optimization approach for calibrating large-scale activity-based transport models
S. Agriesti
Vladimir Kuzmanovski
Jaakko Hollmén
C. Roncoli
Bat-hen Nahmias-Biran
29
5
0
07 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
40
12
0
27 Jan 2023
Data-driven Science and Machine Learning Methods in Laser-Plasma Physics
Andreas Döpp
C. Eberle
S. Howard
F. Irshad
Jinpu Lin
M. Streeter
AI4CE
32
63
0
30 Nov 2022
Differentiable User Models
Alex Hamalainen
Mustafa Mert cCelikok
Samuel Kaski
26
1
0
29 Nov 2022
Simulation-based inference of Bayesian hierarchical models while checking for model misspecification
F. Leclercq
33
6
0
22 Sep 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
22
20
0
09 Jun 2022
Nonparametric likelihood-free inference with Jensen-Shannon divergence for simulator-based models with categorical output
J. Corander
Ulpu Remes
Ida Holopainen
T. Koski
25
0
0
22 May 2022
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
41
5
0
07 Jan 2022
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
41
26
0
20 Dec 2021
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
33
31
0
25 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
28
1
0
02 Nov 2021
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
39
37
0
02 Jul 2021
Gradient-based Bayesian Experimental Design for Implicit Models using Mutual Information Lower Bounds
Steven Kleinegesse
Michael U. Gutmann
FedML
33
25
0
10 May 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
34
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
185
0
12 Jan 2021
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
30
79
0
20 Oct 2020
Generalised Bayes Updates with
f
f
f
-divergences through Probabilistic Classifiers
Owen Thomas
Henri Pesonen
J. Corander
FedML
29
2
0
08 Jul 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
22
40
0
15 Jun 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
42
17
0
14 Apr 2020
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
26
66
0
19 Feb 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
45
117
0
10 Feb 2020
Efficient Bayesian synthetic likelihood with whitening transformations
Jacob W. Priddle
Scott A. Sisson
David T. Frazier
Christopher C. Drovandi
16
18
0
11 Sep 2019
Likelihood-free approximate Gibbs sampling
G. S. Rodrigues
David J. Nott
Scott A. Sisson
30
24
0
11 Jun 2019
Robust Optimisation Monte Carlo
Borislav Ikonomov
Michael U. Gutmann
14
8
0
01 Apr 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
32
20
0
10 Mar 2019
Adaptive Gaussian Copula ABC
Yanzhi Chen
Michael U. Gutmann
TPM
18
27
0
27 Feb 2019
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
23
40
0
13 Feb 2019
Prepaid parameter estimation without likelihoods
M. Mestdagh
S. Verdonck
Kristof Meers
Tim Loossens
F. Tuerlinckx
11
16
0
24 Dec 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
37
13
0
23 Feb 2018
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
Ritabrata Dutta
Marcel Schoengens
Lorenzo Pacchiardi
Avinash Ummadisingu
Nicole Widmer
Pierre Künzli
J. Onnela
Antonietta Mira
29
25
0
13 Nov 2017
Inverse Reinforcement Learning from Summary Data
A. Kangasrääsiö
Samuel Kaski
OffRL
26
15
0
28 Mar 2017
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
42
145
0
30 Nov 2016
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
25
412
0
11 Oct 2016
Fast
ε
ε
ε
-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
32
158
0
20 May 2016
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference
Edward Meeds
Max Welling
27
36
0
11 Jun 2015
1
2
Next