Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.8695
Cited By
On Particle Methods for Parameter Estimation in State-Space Models
30 December 2014
N. Kantas
Arnaud Doucet
Sumeetpal S. Singh
J. Maciejowski
Nicolas Chopin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Particle Methods for Parameter Estimation in State-Space Models"
37 / 37 papers shown
Title
Learning to be Smooth: An End-to-End Differentiable Particle Smoother
Ali Younis
Erik B. Sudderth
AI4TS
38
0
0
14 Feb 2025
Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Yang Cao
Zhao-quan Song
Chiwun Yang
VGen
44
2
0
01 Feb 2025
Sparse Graphical Linear Dynamical Systems
Émilie Chouzenoux
Victor Elvira
25
7
0
06 Jul 2023
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
Benjamin Cox
Victor Elvira
36
10
0
20 Jun 2023
Real-Time Variational Method for Learning Neural Trajectory and its Dynamics
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
OffRL
21
6
0
18 May 2023
Designing Proposal Distributions for Particle Filters using Integrated Nested Laplace Approximation
A. Amri
19
1
0
05 May 2023
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Wenhan Li
Xiongjie Chen
Wenwu Wang
Victor Elvira
Yunpeng Li
30
6
0
20 Feb 2023
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
42
2
0
14 Dec 2022
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
11
10
0
26 Oct 2022
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Pedram Agand
Mo Chen
H. Taghirad
35
4
0
23 Oct 2022
Can a latent Hawkes process be used for epidemiological modelling?
Stamatina Lamprinakou
Axel Gandy
E. McCoy
14
1
0
15 Aug 2022
Inference of Regulatory Networks Through Temporally Sparse Data
Mohammad Alali
Mahdi Imani
17
17
0
21 Jul 2022
When Artificial Parameter Evolution Gets Real: Particle Filtering for Time-Varying Parameter Estimation in Deterministic Dynamical Systems
Andrea Arnold
13
6
0
31 Mar 2022
Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalizing Flow
Xiongjie Chen
Yunpeng Li
13
6
0
16 Mar 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
19
11
0
29 Oct 2021
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
25
21
0
26 Oct 2021
Differentiable Particle Filters through Conditional Normalizing Flow
Xiongjie Chen
Hao Wen
Yunpeng Li
21
20
0
01 Jul 2021
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan Willem van de Meent
BDL
18
20
0
21 Jun 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
39
66
0
15 Feb 2021
End-To-End Semi-supervised Learning for Differentiable Particle Filters
Hao Wen
Xiongjie Chen
Georgios Papagiannis
Conghui Hu
Yunpeng Li
22
17
0
11 Nov 2020
Generalized Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati
Ömer Deniz Akyildiz
Theodoros Damoulas
A. M. Johansen
14
4
0
23 Feb 2020
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
11
21
0
03 Sep 2019
Parameter Learning and Change Detection Using a Particle Filter With Accelerated Adaptation
Karol Gellert
Erik Schlögl
11
3
0
14 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
13
10
0
23 May 2018
Particle-based, online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
Jimmy Olsson
Johan Westerborn Alenlöv
16
10
0
22 Dec 2017
Sequential Monte Carlo Methods in the nimble R Package
Nick Michaud
P. de Valpine
Daniel Turek
C. Paciorek
D. Nguyen
31
6
0
17 Mar 2017
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
27
119
0
17 Mar 2017
On embedded hidden Markov models and particle Markov chain Monte Carlo methods
Axel Finke
Arnaud Doucet
A. M. Johansen
11
11
0
27 Oct 2016
Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
Axel Finke
Sumeetpal S. Singh
37
16
0
28 Jun 2016
Coupling of Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
22
24
0
03 Jun 2016
On Coupling Particle Filter Trajectories
Deborshee Sen
Alexandre Hoang Thiery
Ajay Jasra
23
21
0
03 Jun 2016
Uniform convergence over time of a nested particle filtering scheme for recursive parameter estimation in state--space Markov models
Dan Crisan
Joaquín Míguez
11
12
0
30 Mar 2016
Towards Practical Bayesian Parameter and State Estimation
Yusuf Erol
Yi Wu
Lei Li
Stuart J. Russell
24
0
0
29 Mar 2016
A flexible state space model for learning nonlinear dynamical systems
Andreas Svensson
Thomas B. Schon
14
104
0
17 Mar 2016
Sequential Empirical Bayes method for filtering dynamic spatiotemporal processes
E. Evangelou
Vasileios Maroulas
25
7
0
08 Jun 2015
Biased Online Parameter Inference for State-Space Models
Yan Zhou
Ajay Jasra
36
9
0
01 Mar 2015
On Particle Learning
Nicolas Chopin
A. Iacobucci
Jean-Michel Marin
Kerrie Mengersen
Christian P. Robert
Robin J. Ryder
Christian Schafer
65
28
0
03 Jun 2010
1