ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.8695
  4. Cited By
On Particle Methods for Parameter Estimation in State-Space Models

On Particle Methods for Parameter Estimation in State-Space Models

30 December 2014
N. Kantas
Arnaud Doucet
Sumeetpal S. Singh
J. Maciejowski
Nicolas Chopin
ArXivPDFHTML

Papers citing "On Particle Methods for Parameter Estimation in State-Space Models"

37 / 37 papers shown
Title
Learning to be Smooth: An End-to-End Differentiable Particle Smoother
Learning to be Smooth: An End-to-End Differentiable Particle Smoother
Ali Younis
Erik B. Sudderth
AI4TS
38
0
0
14 Feb 2025
Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Yang Cao
Zhao-quan Song
Chiwun Yang
VGen
44
2
0
01 Feb 2025
Sparse Graphical Linear Dynamical Systems
Sparse Graphical Linear Dynamical Systems
Émilie Chouzenoux
Victor Elvira
25
7
0
06 Jul 2023
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space
  Models
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
Benjamin Cox
Victor Elvira
36
10
0
20 Jun 2023
Real-Time Variational Method for Learning Neural Trajectory and its
  Dynamics
Real-Time Variational Method for Learning Neural Trajectory and its Dynamics
Matthew Dowling
Yuan Zhao
Il Memming Park
BDL
OffRL
21
6
0
18 May 2023
Designing Proposal Distributions for Particle Filters using Integrated
  Nested Laplace Approximation
Designing Proposal Distributions for Particle Filters using Integrated Nested Laplace Approximation
A. Amri
19
1
0
05 May 2023
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Wenhan Li
Xiongjie Chen
Wenwu Wang
Victor Elvira
Yunpeng Li
30
6
0
20 Feb 2023
Particle-Based Score Estimation for State Space Model Learning in
  Autonomous Driving
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
42
2
0
14 Dec 2022
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
11
10
0
26 Oct 2022
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Pedram Agand
Mo Chen
H. Taghirad
35
4
0
23 Oct 2022
Can a latent Hawkes process be used for epidemiological modelling?
Can a latent Hawkes process be used for epidemiological modelling?
Stamatina Lamprinakou
Axel Gandy
E. McCoy
14
1
0
15 Aug 2022
Inference of Regulatory Networks Through Temporally Sparse Data
Inference of Regulatory Networks Through Temporally Sparse Data
Mohammad Alali
Mahdi Imani
17
17
0
21 Jul 2022
When Artificial Parameter Evolution Gets Real: Particle Filtering for
  Time-Varying Parameter Estimation in Deterministic Dynamical Systems
When Artificial Parameter Evolution Gets Real: Particle Filtering for Time-Varying Parameter Estimation in Deterministic Dynamical Systems
Andrea Arnold
13
6
0
31 Mar 2022
Conditional Measurement Density Estimation in Sequential Monte Carlo via
  Normalizing Flow
Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalizing Flow
Xiongjie Chen
Yunpeng Li
13
6
0
16 Mar 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
19
11
0
29 Oct 2021
Online Variational Filtering and Parameter Learning
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
25
21
0
26 Oct 2021
Differentiable Particle Filters through Conditional Normalizing Flow
Differentiable Particle Filters through Conditional Normalizing Flow
Xiongjie Chen
Hao Wen
Yunpeng Li
21
20
0
01 Jul 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan Willem van de Meent
BDL
18
20
0
21 Jun 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
39
66
0
15 Feb 2021
End-To-End Semi-supervised Learning for Differentiable Particle Filters
End-To-End Semi-supervised Learning for Differentiable Particle Filters
Hao Wen
Xiongjie Chen
Georgios Papagiannis
Conghui Hu
Yunpeng Li
22
17
0
11 Nov 2020
Generalized Bayesian Filtering via Sequential Monte Carlo
Generalized Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati
Ömer Deniz Akyildiz
Theodoros Damoulas
A. M. Johansen
14
4
0
23 Feb 2020
Stochastic quasi-Newton with line-search regularization
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
11
21
0
03 Sep 2019
Parameter Learning and Change Detection Using a Particle Filter With
  Accelerated Adaptation
Parameter Learning and Change Detection Using a Particle Filter With Accelerated Adaptation
Karol Gellert
Erik Schlögl
11
3
0
14 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
13
10
0
23 May 2018
Particle-based, online estimation of tangent filters with application to
  parameter estimation in nonlinear state-space models
Particle-based, online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
Jimmy Olsson
Johan Westerborn Alenlöv
16
10
0
22 Dec 2017
Sequential Monte Carlo Methods in the nimble R Package
Sequential Monte Carlo Methods in the nimble R Package
Nick Michaud
P. de Valpine
Daniel Turek
C. Paciorek
D. Nguyen
31
6
0
17 Mar 2017
Inference via low-dimensional couplings
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
27
119
0
17 Mar 2017
On embedded hidden Markov models and particle Markov chain Monte Carlo
  methods
On embedded hidden Markov models and particle Markov chain Monte Carlo methods
Axel Finke
Arnaud Doucet
A. M. Johansen
11
11
0
27 Oct 2016
Approximate Smoothing and Parameter Estimation in High-Dimensional
  State-Space Models
Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
Axel Finke
Sumeetpal S. Singh
37
16
0
28 Jun 2016
Coupling of Particle Filters
Coupling of Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
22
24
0
03 Jun 2016
On Coupling Particle Filter Trajectories
On Coupling Particle Filter Trajectories
Deborshee Sen
Alexandre Hoang Thiery
Ajay Jasra
23
21
0
03 Jun 2016
Uniform convergence over time of a nested particle filtering scheme for
  recursive parameter estimation in state--space Markov models
Uniform convergence over time of a nested particle filtering scheme for recursive parameter estimation in state--space Markov models
Dan Crisan
Joaquín Míguez
11
12
0
30 Mar 2016
Towards Practical Bayesian Parameter and State Estimation
Towards Practical Bayesian Parameter and State Estimation
Yusuf Erol
Yi Wu
Lei Li
Stuart J. Russell
24
0
0
29 Mar 2016
A flexible state space model for learning nonlinear dynamical systems
A flexible state space model for learning nonlinear dynamical systems
Andreas Svensson
Thomas B. Schon
14
104
0
17 Mar 2016
Sequential Empirical Bayes method for filtering dynamic spatiotemporal
  processes
Sequential Empirical Bayes method for filtering dynamic spatiotemporal processes
E. Evangelou
Vasileios Maroulas
25
7
0
08 Jun 2015
Biased Online Parameter Inference for State-Space Models
Biased Online Parameter Inference for State-Space Models
Yan Zhou
Ajay Jasra
36
9
0
01 Mar 2015
On Particle Learning
On Particle Learning
Nicolas Chopin
A. Iacobucci
Jean-Michel Marin
Kerrie Mengersen
Christian P. Robert
Robin J. Ryder
Christian Schafer
65
28
0
03 Jun 2010
1