ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.08466
16
10

Particle-based, online estimation of tangent filters with application to parameter estimation in nonlinear state-space models

22 December 2017
Jimmy Olsson
Johan Westerborn Alenlöv
ArXivPDFHTML
Abstract

This paper presents a novel algorithm for efficient online estimation of the filter derivatives in general hidden Markov models. The algorithm, which has a linear computational complexity and very limited memory requirements, is furnished with a number of convergence results, including a central limit theorem with an asymptotic variance that can be shown to be uniformly bounded in time. Using the proposed filter derivative estimator we design a recursive maximum likelihood algorithm updating the parameters according the gradient of the one-step predictor log-likelihood. The efficiency of this online parameter estimation scheme is illustrated in a simulation study.

View on arXiv
Comments on this paper