ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.6806
  4. Cited By
Striving for Simplicity: The All Convolutional Net
v1v2v3 (latest)

Striving for Simplicity: The All Convolutional Net

21 December 2014
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Striving for Simplicity: The All Convolutional Net"

50 / 1,866 papers shown
Title
Interpreting and improving deep-learning models with reality checks
Interpreting and improving deep-learning models with reality checks
Chandan Singh
Wooseok Ha
Bin Yu
FAtt
84
3
0
16 Aug 2021
Finding Representative Interpretations on Convolutional Neural Networks
Finding Representative Interpretations on Convolutional Neural Networks
P. C. Lam
Lingyang Chu
Maxim Torgonskiy
J. Pei
Yong Zhang
Lanjun Wang
FAttSSLHAI
70
6
0
13 Aug 2021
Voxel-level Importance Maps for Interpretable Brain Age Estimation
Voxel-level Importance Maps for Interpretable Brain Age Estimation
Kyriaki-Margarita Bintsi
V. Baltatzis
A. Hammers
Daniel Rueckert
64
12
0
11 Aug 2021
DVM-CAR: A large-scale automotive dataset for visual marketing research
  and applications
DVM-CAR: A large-scale automotive dataset for visual marketing research and applications
JingMin Huang
Bowei Chen
Lan Luo
Shigang Yue
I. Ounis
75
15
0
10 Aug 2021
Harnessing value from data science in business: ensuring explainability
  and fairness of solutions
Harnessing value from data science in business: ensuring explainability and fairness of solutions
Krzysztof Chomiak
Michal Miktus
25
0
0
10 Aug 2021
Improved Feature Importance Computations for Tree Models: Shapley vs.
  Banzhaf
Improved Feature Importance Computations for Tree Models: Shapley vs. Banzhaf
Adam Karczmarz
A. Mukherjee
Piotr Sankowski
Piotr Wygocki
FAttTDI
107
6
0
09 Aug 2021
Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning
  Models
Human-in-the-loop Extraction of Interpretable Concepts in Deep Learning Models
Zhenge Zhao
Panpan Xu
C. Scheidegger
Liu Ren
48
39
0
08 Aug 2021
Generalizable Mixed-Precision Quantization via Attribution Rank
  Preservation
Generalizable Mixed-Precision Quantization via Attribution Rank Preservation
Ziwei Wang
Han Xiao
Jiwen Lu
Jie Zhou
MQ
74
32
0
05 Aug 2021
Where do Models go Wrong? Parameter-Space Saliency Maps for
  Explainability
Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability
Roman Levin
Manli Shu
Eitan Borgnia
Furong Huang
Micah Goldblum
Tom Goldstein
FAttAAML
55
11
0
03 Aug 2021
Finding Discriminative Filters for Specific Degradations in Blind
  Super-Resolution
Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution
Liangbin Xie
Xintao Wang
Chao Dong
Zhongang Qi
Ying Shan
57
39
0
02 Aug 2021
Surrogate Model-Based Explainability Methods for Point Cloud NNs
Surrogate Model-Based Explainability Methods for Point Cloud NNs
Hanxiao Tan
Helena Kotthaus
3DPC
63
29
0
28 Jul 2021
Evaluating the Use of Reconstruction Error for Novelty Localization
Evaluating the Use of Reconstruction Error for Novelty Localization
Patrick Feeney
M. C. Hughes
42
3
0
28 Jul 2021
Distributed stochastic inertial-accelerated methods with delayed
  derivatives for nonconvex problems
Distributed stochastic inertial-accelerated methods with delayed derivatives for nonconvex problems
Yangyang Xu
Yibo Xu
Yonggui Yan
Jiewei Chen
66
4
0
24 Jul 2021
Robust Explainability: A Tutorial on Gradient-Based Attribution Methods
  for Deep Neural Networks
Robust Explainability: A Tutorial on Gradient-Based Attribution Methods for Deep Neural Networks
Ian E. Nielsen
Dimah Dera
Ghulam Rasool
N. Bouaynaya
R. Ramachandran
FAtt
79
82
0
23 Jul 2021
Exploring Deep Registration Latent Spaces
Exploring Deep Registration Latent Spaces
Théo Estienne
Maria Vakalopoulou
Stergios Christodoulidis
Enzo Battistella
T. Henry
...
A. Leroy
G. Chassagnon
M. Revel
Nikos Paragios
Eric Deutsch
110
1
0
23 Jul 2021
Explainable artificial intelligence (XAI) in deep learning-based medical
  image analysis
Explainable artificial intelligence (XAI) in deep learning-based medical image analysis
Bas H. M. van der Velden
Hugo J. Kuijf
K. Gilhuijs
M. Viergever
XAI
106
676
0
22 Jul 2021
Shared Interest: Measuring Human-AI Alignment to Identify Recurring
  Patterns in Model Behavior
Shared Interest: Measuring Human-AI Alignment to Identify Recurring Patterns in Model Behavior
Angie Boggust
Benjamin Hoover
Arvindmani Satyanarayan
Hendrik Strobelt
73
52
0
20 Jul 2021
M2Lens: Visualizing and Explaining Multimodal Models for Sentiment
  Analysis
M2Lens: Visualizing and Explaining Multimodal Models for Sentiment Analysis
Xingbo Wang
Jianben He
Zhihua Jin
Muqiao Yang
Yong Wang
Huamin Qu
102
80
0
17 Jul 2021
AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated Learning
AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated Learning
Young Geun Kim
Carole-Jean Wu
102
87
0
16 Jul 2021
RBUE: A ReLU-Based Uncertainty Estimation Method of Deep Neural Networks
RBUE: A ReLU-Based Uncertainty Estimation Method of Deep Neural Networks
Yufeng Xia
Jun Zhang
Zhiqiang Gong
Tingsong Jiang
Wen Yao
UQCV
56
1
0
15 Jul 2021
Passive Attention in Artificial Neural Networks Predicts Human Visual
  Selectivity
Passive Attention in Artificial Neural Networks Predicts Human Visual Selectivity
Thomas A. Langlois
H. C. Zhao
Erin Grant
Ishita Dasgupta
Thomas Griffiths
Nori Jacoby
87
16
0
14 Jul 2021
Positive-Unlabeled Classification under Class-Prior Shift: A
  Prior-invariant Approach Based on Density Ratio Estimation
Positive-Unlabeled Classification under Class-Prior Shift: A Prior-invariant Approach Based on Density Ratio Estimation
Shōta Nakajima
Masashi Sugiyama
149
9
0
11 Jul 2021
RRL: Resnet as representation for Reinforcement Learning
RRL: Resnet as representation for Reinforcement Learning
Rutav Shah
Vikash Kumar
OffRL
107
115
0
07 Jul 2021
A Review of Explainable Artificial Intelligence in Manufacturing
A Review of Explainable Artificial Intelligence in Manufacturing
G. Sofianidis
Jože M. Rožanec
Dunja Mladenić
D. Kyriazis
84
17
0
05 Jul 2021
Design Smells in Deep Learning Programs: An Empirical Study
Design Smells in Deep Learning Programs: An Empirical Study
Amin Nikanjam
Foutse Khomh
94
12
0
05 Jul 2021
Improving a neural network model by explanation-guided training for
  glioma classification based on MRI data
Improving a neural network model by explanation-guided training for glioma classification based on MRI data
Frantisek Sefcik
Wanda Benesova
36
12
0
05 Jul 2021
When and How to Fool Explainable Models (and Humans) with Adversarial
  Examples
When and How to Fool Explainable Models (and Humans) with Adversarial Examples
Jon Vadillo
Roberto Santana
Jose A. Lozano
SILMAAML
97
13
0
05 Jul 2021
Quality Metrics for Transparent Machine Learning With and Without Humans
  In the Loop Are Not Correlated
Quality Metrics for Transparent Machine Learning With and Without Humans In the Loop Are Not Correlated
F. Biessmann
D. Refiano
47
10
0
01 Jul 2021
Explainable Diabetic Retinopathy Detection and Retinal Image Generation
Explainable Diabetic Retinopathy Detection and Retinal Image Generation
Yuhao Niu
Lin Gu
Yitian Zhao
Feng Lu
MedIm
66
58
0
01 Jul 2021
Explanation-Guided Diagnosis of Machine Learning Evasion Attacks
Explanation-Guided Diagnosis of Machine Learning Evasion Attacks
Abderrahmen Amich
Birhanu Eshete
AAML
50
11
0
30 Jun 2021
Contrastive Counterfactual Visual Explanations With Overdetermination
Contrastive Counterfactual Visual Explanations With Overdetermination
Adam White
K. Ngan
James Phelan
Saman Sadeghi Afgeh
Kevin Ryan
C. Reyes-Aldasoro
Artur Garcez
53
8
0
28 Jun 2021
R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network
R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network
Jiang Hai
Zhu Xuan
Songchen Han
Ren Yang
Yutong Hao
Fengzhu Zou
Fang-Ju Lin
81
249
0
28 Jun 2021
Crowdsourcing Evaluation of Saliency-based XAI Methods
Crowdsourcing Evaluation of Saliency-based XAI Methods
Xiaotian Lu
A. Tolmachev
Tatsuya Yamamoto
Koh Takeuchi
Seiji Okajima
T. Takebayashi
Koji Maruhashi
H. Kashima
XAIFAtt
55
14
0
27 Jun 2021
Inverting and Understanding Object Detectors
Inverting and Understanding Object Detectors
Ang Cao
Justin Johnson
ObjD
128
3
0
26 Jun 2021
Software for Dataset-wide XAI: From Local Explanations to Global
  Insights with Zennit, CoRelAy, and ViRelAy
Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy
Christopher J. Anders
David Neumann
Wojciech Samek
K. Müller
Sebastian Lapuschkin
107
66
0
24 Jun 2021
Feature Alignment as a Generative Process
Feature Alignment as a Generative Process
T. S. Farias
Jonas Maziero
DiffMBDL
63
1
0
23 Jun 2021
Leveraging Conditional Generative Models in a General Explanation
  Framework of Classifier Decisions
Leveraging Conditional Generative Models in a General Explanation Framework of Classifier Decisions
Martin Charachon
P. Cournède
C´eline Hudelot
R. Ardon
37
5
0
21 Jun 2021
CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
  Mapping for image saliency
CAMERAS: Enhanced Resolution And Sanity preserving Class Activation Mapping for image saliency
M. Jalwana
Naveed Akhtar
Bennamoun
Ajmal Mian
56
56
0
20 Jun 2021
Analyzing Adversarial Robustness of Deep Neural Networks in Pixel Space:
  a Semantic Perspective
Analyzing Adversarial Robustness of Deep Neural Networks in Pixel Space: a Semantic Perspective
Lina Wang
Xingshu Chen
Yulong Wang
Yawei Yue
Yi Zhu
Xuemei Zeng
Wei Wang
AAML
46
0
0
18 Jun 2021
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
Guided Integrated Gradients: An Adaptive Path Method for Removing Noise
A. Kapishnikov
Subhashini Venugopalan
Besim Avci
Benjamin D. Wedin
Michael Terry
Tolga Bolukbasi
119
95
0
17 Jun 2021
Keep CALM and Improve Visual Feature Attribution
Keep CALM and Improve Visual Feature Attribution
Jae Myung Kim
Junsuk Choe
Zeynep Akata
Seong Joon Oh
FAtt
480
20
0
15 Jun 2021
Deep neural network loses attention to adversarial images
Deep neural network loses attention to adversarial images
Shashank Kotyan
Danilo Vasconcellos Vargas
AAMLGAN
45
4
0
10 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
91
32
0
09 Jun 2021
Object Based Attention Through Internal Gating
Object Based Attention Through Internal Gating
Jordan Lei
Ari S. Benjamin
Konrad Paul Kording
OCL
31
4
0
08 Jun 2021
Resolution learning in deep convolutional networks using scale-space
  theory
Resolution learning in deep convolutional networks using scale-space theory
Silvia L.Pintea
Nergis Tomen
Stanley F. Goes
Marco Loog
Jan van Gemert
SupRSSL
110
37
0
07 Jun 2021
Causal Abstractions of Neural Networks
Causal Abstractions of Neural Networks
Atticus Geiger
Hanson Lu
Thomas Icard
Christopher Potts
NAICML
80
246
0
06 Jun 2021
Convolutional Neural Networks with Gated Recurrent Connections
Convolutional Neural Networks with Gated Recurrent Connections
Jianfeng Wang
Xiaolin Hu
ObjD
62
40
0
05 Jun 2021
BR-NPA: A Non-Parametric High-Resolution Attention Model to improve the
  Interpretability of Attention
BR-NPA: A Non-Parametric High-Resolution Attention Model to improve the Interpretability of Attention
T. Gomez
Suiyi Ling
Thomas Fréour
Harold Mouchère
52
5
0
04 Jun 2021
ERANNs: Efficient Residual Audio Neural Networks for Audio Pattern
  Recognition
ERANNs: Efficient Residual Audio Neural Networks for Audio Pattern Recognition
S. Verbitskiy
Vladimir Berikov
Viacheslav Vyshegorodtsev
109
75
0
03 Jun 2021
Deep Learning Based Analysis of Prostate Cancer from MP-MRI
Deep Learning Based Analysis of Prostate Cancer from MP-MRI
Pedro C. Neto
11
3
0
02 Jun 2021
Previous
123...141516...363738
Next