ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.3779
  4. Cited By
Biips: Software for Bayesian Inference with Interacting Particle Systems

Biips: Software for Bayesian Inference with Interacting Particle Systems

11 December 2014
A. Todeschini
François Caron
Marc Fuentes
P. Legrand
P. Del Moral
ArXivPDFHTML

Papers citing "Biips: Software for Bayesian Inference with Interacting Particle Systems"

8 / 8 papers shown
Title
A New Approach to Probabilistic Programming Inference
A New Approach to Probabilistic Programming Inference
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
59
346
0
03 Jul 2015
Venture: a higher-order probabilistic programming platform with
  programmable inference
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
61
255
0
01 Apr 2014
Sequential Monte Carlo for Graphical Models
Sequential Monte Carlo for Graphical Models
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
86
49
0
03 Feb 2014
vSMC: Parallel Sequential Monte Carlo in C++
vSMC: Parallel Sequential Monte Carlo in C++
Yan Zhou
51
15
0
24 Jun 2013
Bayesian State-Space Modelling on High-Performance Hardware Using LibBi
Bayesian State-Space Modelling on High-Performance Hardware Using LibBi
Lawrence M. Murray
81
112
0
14 Jun 2013
Capturing the time-varying drivers of an epidemic using stochastic
  dynamical systems
Capturing the time-varying drivers of an epidemic using stochastic dynamical systems
Joseph Dureau
K. Kalogeropoulos
M. Baguelin
80
109
0
27 Mar 2012
Ecological non-linear state space model selection via adaptive particle
  Markov chain Monte Carlo (AdPMCMC)
Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC)
G. Peters
G. Hosack
K. Hayes
112
45
0
13 May 2010
On the utility of graphics cards to perform massively parallel
  simulation of advanced Monte Carlo methods
On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods
Anthony Lee
C. Yau
M. Giles
Arnaud Doucet
Christopher C. Holmes
95
322
0
14 May 2009
1