80
111
v1v2 (latest)

Capturing the time-varying drivers of an epidemic using stochastic dynamical systems

Abstract

Epidemics are often modelled using non-linear dynamical systems observed through partial and noisy data. In this paper, we consider stochastic extensions in order to capture unknown influences (changing behaviors, public interventions, seasonal effects etc). These models assign diffusion processes to the time-varying parameters, and our inferential procedure is based on a suitably adjusted adaptive particle MCMC algorithm. The performance of the proposed computational methods is validated on simulated data and the adopted model is applied to the 2009 H1N1 pandemic in England. In addition to estimating the effective contact rate trajectories, the methodology is applied in real time to provide evidence in related public health decisions. Diffusion driven SEIR-type models with age structure are also introduced.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.