Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.1370
Cited By
Nested Variational Compression in Deep Gaussian Processes
3 December 2014
J. Hensman
Neil D. Lawrence
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nested Variational Compression in Deep Gaussian Processes"
16 / 16 papers shown
Title
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
19
6
0
11 Dec 2021
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
27
54
0
30 Jun 2020
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
19
42
0
26 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
18
9
0
12 Oct 2019
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Hao Zhou
Yunyang Xiong
Vikas Singh
UQCV
BDL
52
4
0
10 Jun 2018
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
19
1,071
0
01 Nov 2017
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
22
19
0
08 Oct 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
34
415
0
24 May 2017
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
142
0
14 Oct 2016
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis
Andreas C. Damianou
Neil D. Lawrence
Carl Henrik Ek
14
12
0
17 Apr 2016
Inverse Reinforcement Learning via Deep Gaussian Process
Ming Jin
Andreas C. Damianou
Pieter Abbeel
C. Spanos
OffRL
BDL
GP
18
22
0
26 Dec 2015
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
30
189
0
27 Apr 2015
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
30
95
0
06 Apr 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
41
935
0
11 Feb 2015
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
1