Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.8003
Cited By
Guaranteed Matrix Completion via Non-convex Factorization
28 November 2014
Ruoyu Sun
Z. Luo
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Guaranteed Matrix Completion via Non-convex Factorization"
50 / 68 papers shown
Title
Euclidean Distance Matrix Completion via Asymmetric Projected Gradient Descent
Yicheng Li
Xinghua Sun
39
0
0
28 Apr 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
40
34
0
13 Apr 2025
Matrix Completion with Graph Information: A Provable Nonconvex Optimization Approach
Yao Wang
Yiyang Yang
Kaidong Wang
Shanxing Gao
Xiuwu Liao
63
0
0
12 Feb 2025
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
29
0
0
28 Jan 2025
Fast and Provable Tensor-Train Format Tensor Completion via Precondtioned Riemannian Gradient Descent
Fengmiao Bian
Jian-Feng Cai
Xiaoqun Zhang
Yuanwei Zhang
70
0
0
23 Jan 2025
Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition
Zhen Qin
Zhihui Zhu
74
4
0
10 Jun 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
37
12
0
06 Jun 2024
Discrete Aware Matrix Completion via Convexized
ℓ
0
\ell_0
ℓ
0
-Norm Approximation
Niclas Führling
Kengo Ando
Giuseppe Thadeu Freitas de Abreu
David González González
Osvaldo Gonsa
28
1
0
03 May 2024
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Marcelo Fiori
Bernardo Marenco
Federico Larroca
P. Bermolen
Gonzalo Mateos
BDL
27
3
0
25 Jul 2023
A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabian Pedregosa
Rishabh Agarwal
Marc G. Bellemare
44
8
0
08 Dec 2022
Learning Transition Operators From Sparse Space-Time Samples
C. Kümmerle
Mauro Maggioni
Sui Tang
26
1
0
01 Dec 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
19
6
0
29 Sep 2022
Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
G. Zhang
Hong-Ming Chiu
Richard Y. Zhang
16
10
0
24 Aug 2022
Personalized PCA: Decoupling Shared and Unique Features
Naichen Shi
Raed Al Kontar
22
14
0
17 Jul 2022
Robust Matrix Completion with Heavy-tailed Noise
Bingyan Wang
Jianqing Fan
21
3
0
09 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
42
23
0
07 Jun 2022
Accelerating nuclear-norm regularized low-rank matrix optimization through Burer-Monteiro decomposition
Ching-pei Lee
Ling Liang
Tianyun Tang
Kim-Chuan Toh
19
11
0
29 Apr 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
On Uniform Boundedness Properties of SGD and its Momentum Variants
Xiaoyu Wang
M. Johansson
23
3
0
25 Jan 2022
Fair and efficient contribution valuation for vertical federated learning
Zhenan Fan
Huang Fang
Zirui Zhou
Jian Pei
M. Friedlander
Yong Zhang
TDI
FedML
19
25
0
07 Jan 2022
On Asymptotic Linear Convergence of Projected Gradient Descent for Constrained Least Squares
Trung Vu
Raviv Raich
15
13
0
22 Dec 2021
Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates
Steve Chien
Prateek Jain
Walid Krichene
Steffen Rendle
Shuang Song
Abhradeep Thakurta
Li Zhang
25
19
0
20 Jul 2021
Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix Factorization
Tian-Chun Ye
S. Du
19
46
0
27 Jun 2021
GNMR: A provable one-line algorithm for low rank matrix recovery
Pini Zilber
B. Nadler
48
13
0
24 Jun 2021
Time Series Forecasting via Learning Convolutionally Low-Rank Models
Guangcan Liu
AI4TS
29
13
0
23 Apr 2021
Sharp Global Guarantees for Nonconvex Low-rank Recovery in the Noisy Overparameterized Regime
Richard Y. Zhang
39
1
0
21 Apr 2021
Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix Completion via Gradient Descent
Trung Vu
Raviv Raich
25
10
0
04 Feb 2021
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
34
165
0
15 Dec 2020
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
19
113
0
18 May 2020
An Optimal Statistical and Computational Framework for Generalized Tensor Estimation
Rungang Han
Rebecca Willett
Anru R. Zhang
27
65
0
26 Feb 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
Online high rank matrix completion
Jicong Fan
Madeleine Udell
OffRL
21
34
0
20 Feb 2020
Rank
2
r
2r
2
r
iterative least squares: efficient recovery of ill-conditioned low rank matrices from few entries
Jonathan Bauch
B. Nadler
Pini Zilber
19
13
0
05 Feb 2020
A frequency-domain analysis of inexact gradient methods
Oran Gannot
16
25
0
31 Dec 2019
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
25
19
0
31 Dec 2019
Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery
Jicong Fan
Lijun Ding
Yudong Chen
Madeleine Udell
12
69
0
13 Nov 2019
Latent Function Decomposition for Forecasting Li-ion Battery Cells Capacity: A Multi-Output Convolved Gaussian Process Approach
Abdallah A. Chehade
A. Hussein
BDL
13
16
0
19 Jul 2019
Testing Matrix Rank, Optimally
Maria-Florina Balcan
Yi Li
David P. Woodruff
Hongyang R. Zhang
16
23
0
18 Oct 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark W. Schmidt
30
296
0
16 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
11
31
0
05 Oct 2018
A Survey on Nonconvex Regularization Based Sparse and Low-Rank Recovery in Signal Processing, Statistics, and Machine Learning
Fei Wen
L. Chu
Peilin Liu
Robert C. Qiu
23
153
0
16 Aug 2018
A review on distance based time series classification
A. Abanda
U. Mori
Jose A. Lozano
AI4TS
11
248
0
12 Jun 2018
Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow
Xiao Zhang
S. Du
Quanquan Gu
23
24
0
03 Mar 2018
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form
Srinadh Bhojanapalli
Nicolas Boumal
Prateek Jain
Praneeth Netrapalli
23
42
0
01 Mar 2018
Asynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth Optimization
Rui Zhu
Di Niu
Zongpeng Li
6
4
0
24 Feb 2018
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
24
478
0
21 Dec 2017
Blind Gain and Phase Calibration via Sparse Spectral Methods
Yanjun Li
Kiryung Lee
Y. Bresler
19
27
0
30 Nov 2017
Analysis of Biased Stochastic Gradient Descent Using Sequential Semidefinite Programs
Bin Hu
Peter M. Seiler
Laurent Lessard
16
38
0
03 Nov 2017
1
2
Next